Active Interrogation of SNMs by use of IEC Fusion Neutron Source

Kai Masuda¹, T. Masawa², Y. Yakahashi², T. Yagi², K. Inoue¹, T. Kajiwara¹, R. Nakamatsu¹, and LSC-NRF group in JAEA and Kyoto-U.

¹ Inst. Advanced Energy, Kyoto Univ.
² Research Reactor Inst., Kyoto Univ.
Nuclear Terrorism Threats

- Conventional gun-type nuclear weapon: 30 – 60 kg of 235U

- Modern tactical nuclear weapon: 10 – 30 kg of 239Pu

- 235U Hiroshima-type – easy to make, no need of test bans, assembling in the target nation is possible, identification by shape is not effective enough, passive detection is impossible unlike 239Pu.

- “Suicide bombing” makes prevention of terrorism very difficult. We need to block smuggling at its point of entry.

- Transportation of tens kg of 235U – air cargo, land transportation, spy ship, sea container.
Megaports Initiative (2007)

- Mandatory SNM screening of all US-bound containers at their port of origin from 2012.

- It has been delayed 2 years (until 2014), due to lack of SNM interrogating system.

- Very rapid (2 min/container) interrogation system is required.
 - JPN gov. will setup 2-3 central seaports.
 - Our proposal is to built SNM screening facilities in those central seaports.
Project Overview

1. Neutron-based system for rapid screening
 - 2-3 min. per container
 - false alarm rate < 10%

2. X-ray image for determination of point(s) of interest
 - 10 min / point

3. γ-ray beam for identification of 235U
 - 10 min / point

Proof-of-principle, prototype experiments, performance evaluation, & scale-up design

- 400 containers / day
- Estimated cost: 12.5M$
- R&D budget: 5.5M$
- 5-year R&D from FY2010
- Mid-term evaluation in FY2012

Image: Diagram of neutron-based system with labels for each component and cost details.
Isotope Identification by γ-ray beam

Nuclear Resonance Fluorescence (NRF)

Energy [keV]

Flux of gamma-rays

Tunable

γ-ray beam
✓ monochromatic
✓ energy tunable
✓ well-collimated

γ-ray beam

- Tunable
- Absorption
- Emission
- Flux of gamma-rays

$2^+ 2657$

$2^+ 846$

$0^+ 0$

$0^+ 0$

$1/2^+ 0$

$7/2^+ 0$

$1^+ 2410$

$1^+ 2464$

$2^+ 2245$

$1^+ 2003$

$1^+ 1862$

$1^+ 1815$

$1^+ 1733$

$1^+ 1846$

$1^+ 1782$

$1^{-} 931$

$1^{-} 680$

56 Fe

239 Pu

208 Pb

235 U

238 U
10^5 photons/sec has been achieved by the prototype.

Design of 220MeV system is under way.
Neutron-Based Screening System

He-3

NE213

Pulsed DD IEC

10^8 n/sec

10 min / 4 containers

Is this possible?
A principal challenge is to distinguish the secondary neutrons from the probing neutrons.

Either DNA or DDT requires a highly intense source of neutrons.

1. Delayed Neutron Noise Analysis (DNNA)
2. High-Energy Neutron Detection (HEND)
DD or DT?

Disadvantage of DD

- DD fusion cross-section is \(~1/100\) of DT.

Advantages of DD over DT

- No need of tritium handling
 - Easy operation, easy maintenance
 - Safe even in case of attack by terrorist

- Lower energy of neutrons
 - We need thermal neutrons to induce fission in SNMs.
 - Less shielding load. Low capital cost.
 - HEND method is applicable.
- 200kV was demonstrated with a dummy load.
- HV test with the IEC device is under way.
Kai Masuda et al. “Active Interrogation of SNMs by use of IEC Fusion Neutron Source, IEC2013, Oct. 6-9, 2013, Kyoto, Japan
Basic Neutron Noise Analysis (NNA)

- Well developed method in fission reactor physics field.
- Characterizes effective neutron multiplication factor, by measuring neutron fluctuation:

\[
\frac{\sigma^2_M(t)}{M(t)} = \frac{\overline{M^2(t)} - (\overline{M(t)})^2}{\overline{M(t)}} \equiv 1 + Y(t)
\]

- \(Y(\infty) = 0\) Poisson distribution
- \(Y(\infty) > 0\) fission chain reaction

Y-value as function of gate time (KUCA with pulsed DT neutrons)
Delayed Neutron Noise Analysis (DNNA)

Kai Masuda et al. "Active Interrogation of SNMs by use of IEC Fusion Neutron Source, IEC2013, Oct. 6-9, 2013, Kyoto, Japan

Pulse Interval

Delayed region

Neutron Count

calculate $Y(t)$
Experimental Setup

U-235: 0.5 kg
NPR (DT): 1.7×10^5 n/sec
Pulse width: 10 μsec
Rep. Rate: 10 Hz

F: HEU, H1-H9: He-3 detectors
Experimental Results

Kai Masuda et al. “Active Interrogation of SNMs by use of IEC Fusion Neutron Source, IEC2013, Oct. 6-9, 2013, Kyoto, Japan

Estimation from these results:

Required number of He-3 detectors for 20ft sea container screening is

30 detectors for 1kg HEU,
10 detectors for 5kg HEU.
detection time: 10 min
DD IEC NPR: $10^8\ n/sec$
- Detect high-energy secondary neutrons above the maximum energy of probing neutrons.
- Use of DD neutron source is mandatory. Neither DT nor RI source is applicable.
- Either dc or pulsed source is applicable.
Distances from the Cf-252 source to NE213 detector is 30cm, which corresponds to ~6 kg HEU in sea container.

NPRs:
- DD IEC
 - $10^5 - 10^7$ [n/sec]
- Cf-252
 - 2.9×10^4 [n/sec]

IEC Fusion Neutron Source, IEC2013, Oct. 6-9, 2013, Kyoto, Japan
Neutron Spectra from Cf-252 & U-235

- **Cf-252**
- **U-235**

Energy (MeV) vs. Neutron flux [a. u.]
Experimental Results

Kai Masuda et al. "Active Interrogation of SNMs by use of IEC Fusion Neutron Source, IEC2013, Oct. 6-9, 2013, Kyoto, Japan

2.45 MeV = 121 ch

DD + Cf-252

DD

i.e. background (pile-up and/or γ-ray)

2.45 MeV = 121 ch

Cf-252
Concluding Summary

- Nondestructive screening as fast as 2 min/container is required in order not to block sea container distribution.

- Two neutron-based methods are being developed that require as low NPR as 10^8 n/sec.

- DNNA method is very promising. ½-scale tests are planned next year.

- Results from HEND experiments are also encouraging. Background due to pile-up of neutrons below the threshold energy needs to be minimized.

- HEND method is very attractive, because DC neutron source is applicable, i.e. very much reduced size and weight.
Transportable system is also possible.

- Ministry of Defense & National Police Agency are more interested in (trans)portable system than the big facility.
- HEND is advantageous, because DC PS is small & lightweight.

Transport IEC & PS by either truck or ship.

Use of a separate truck for detectors is not mandatory.
Ministry of Defense & National Police Agency are more interested in (trans)portable system than the big facility.

HEND is advantageous, because DC PS is small & lightweight.

Also, we don’t need to care about capacitance in long cabling.