



#### Development of Carbon Materials from Biomass for Energy Storage Applications

#### Dr. Sumittra Charojrochkul

Materials for Energy Research Unit National Metal and Materials Technology Center (MTEC) National Science and Technology Development Agency (NSTDA)

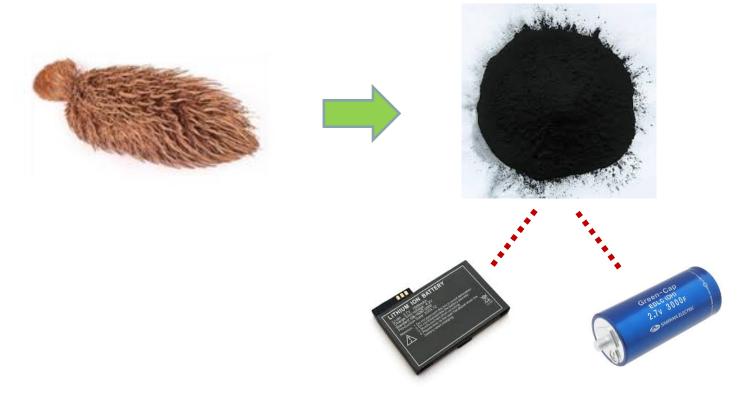




## **Members of Research Group**

- Dr. Sumittra Charojrochkul
- Prof. Dr. Takeshi Abe
- Dr. Yatika Somrang
- Dr. Korakot Sombatmankong
- Mr. Thanathon Sesuk

MTEC/NSTDA Kyoto University MTEC/NSTDA MTEC/NSTDA MTEC/NSTDA






3

#### **Research target**

 To develop activated carbon derived from palm empty fruit bunches for energy storage devices







# Typical characteristics of Capacitor and Battery

| Characteristic                                   | Electrolytic capacitor                 | Carbon<br>supercapacitor                         | Battery                           |
|--------------------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------|
| Specific energy<br>(Wh/kg)                       | <0.1                                   | 1-10                                             | 10-100                            |
| Specific power (W/kg)                            | >>10,000                               | 500-10,000                                       | <1000                             |
| Discharge time                                   | 10 <sup>-6</sup> to 10 <sup>-3</sup> s | s to min                                         | 0.3-3 h                           |
| Charging time                                    | 10 <sup>-6</sup> to 10 <sup>-3</sup> s | s to min                                         | 1-5 h                             |
| Charge/discharge<br>efficiency (%)               | ~100                                   | 85-98                                            | 70-85                             |
| Cycle-life (cycles)                              | Infinite                               | >500,000                                         | ~1,000                            |
| Max. voltage (V <sub>max</sub> )<br>determinants | Dielectric thickness<br>and strength   | Electrode and<br>electrolyte stability<br>window | Thermodynamics of phase reactions |
| Charge stored determinants                       | Electrode area and dielectric          | Electrode<br>microstructure and<br>electrolyte   | Active mass and thermodynamics    |

Pandolfo, A.G., Hollenkamp, A.F., J.Power Sources 157 (2006) 11.



# Properties of carbon-based materials as a supercapacitor component

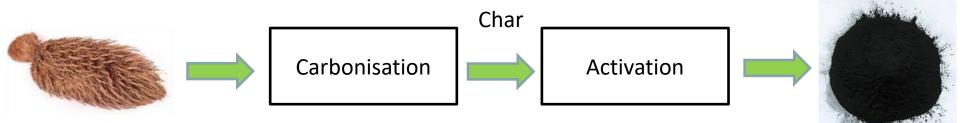
Table 1 Properties and characteristics of various carbon and carbon-based materials as supercapacitors electrode materials

|                                    |                                               |                            | Aqueous ele                   | ctrolyte                       | Organic elec                  | trolyte                        |
|------------------------------------|-----------------------------------------------|----------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|
| Materials                          | Specific surface area/m <sup>2</sup> $g^{-1}$ | Density/g cm <sup>-3</sup> | $/\mathrm{F}~\mathrm{g}^{-1}$ | $/\mathrm{F}~\mathrm{cm}^{-3}$ | $/\mathrm{F}~\mathrm{g}^{-1}$ | $/\mathrm{F}~\mathrm{cm}^{-3}$ |
| Carbon materials                   |                                               |                            |                               |                                |                               |                                |
| Commercial activated carbons (ACs) | 1000-3500                                     | 0.4-0.7                    | < 200                         | < 80                           | < 100                         | < 50                           |
| Particulate carbon from SiC/TiC    | 1000-2000                                     | 0.5-0.7                    | 170-220                       | < 120                          | 100 - 120                     | < 70                           |
| Functionalized porous carbons      | 300-2200                                      | 0.5-0.9                    | 150 - 300                     | < 180                          | 100 - 150                     | < 90                           |
| Carbon nanotube (CNT)              | 120-500                                       | 0.6                        | 50-100                        | < 60                           | < 60                          | < 30                           |
| Templated porous carbons (TC)      | 500-3000                                      | 0.5-1                      | 120-350                       | < 200                          | 60-140                        | < 100                          |
| Activated carbon fibers (ACF)      | 1000-3000                                     | 0.3-0.8                    | 120-370                       | < 150                          | 80-200                        | < 120                          |
| Carbon cloth                       | 2500                                          | 0.4                        | 100 - 200                     | 40-80                          | 60-100                        | 24-40                          |
| Carbon aerogels                    | 400-1000                                      | 0.5-0.7                    | 100-125                       | < 80                           | < 80                          | < 40                           |
| Carbon-based composite materials   |                                               |                            |                               |                                |                               |                                |
| TC-RuO <sub>2</sub> composite      | 600                                           | 1                          | 630                           | 630                            |                               | _                              |
| CNT-MnO <sub>2</sub> composite     | 234                                           | 1.5                        | 199                           | 300                            | _                             | _                              |
| AC-polyaniline composite           | 1000                                          |                            | 300                           | _                              | _                             | _                              |

Zhang, L.L., Zhao, X.S., Chem. Soc. Rev. 38 (2009) 2520.



# Properties of Commercial Negative Electrode Materials for Li-ion Battery


|                                                              |                                | Graphitized                |                            |                                     |
|--------------------------------------------------------------|--------------------------------|----------------------------|----------------------------|-------------------------------------|
| Material Property                                            | Hard Carbon<br>(Pitch-Derived) | Mesocarbon<br>(MCMB 25-28) | Coated Natural<br>Graphite | Synthetic Graphite<br>(TIMREX SLG5) |
| Xylene density (g cm-3)                                      | 1.60                           | 2.10                       | 2.21                       | 2.26                                |
| L <sub>c</sub> (002) (nm)                                    | 1                              | 70                         | 150                        | 150                                 |
| c/2(002) (nm)                                                | 0.377                          | 0.338                      | 0.336                      | 0.336                               |
| BET SSA (m <sup>2</sup> g <sup>-1</sup> )                    | 4.3                            | 1                          | 1.5                        | 1.5                                 |
| Average particle size (µm)                                   | 9                              | 25                         | 18                         | 22                                  |
| Bulk density (Scott density)<br>(g cm <sup>-3</sup> )        | 0.35                           | 0.90                       | 0.83                       | 0.60                                |
| Typical reversible charge<br>capacity (mAh g <sup>-1</sup> ) | 400                            | 335                        | 360                        | 360                                 |

Beguin, F., Frackowiak, E., Carbons for Electrochemical Energy Storage and Conversion Systems (2010)





## **Schematic of Proposed Research**



- Carbonisation of washed biomass
- Hydrothermal carbonisation

- Physical activation (CO<sub>2</sub>, steam)
- Chemical activation (ZnCl<sub>2</sub>, H<sub>3</sub>PO<sub>4</sub>, KOH)





# **Project Duration and Budget**

- Project duration
  - 5 years
- Estimated budget
  - 4,800,000 Baht
- Expected output
  - 5 international conference papers
  - 5 international journals (ISI)





#### **Research Plan**

| Year          | MTEC/NSTDA                                                                                                                                                | Kyoto University                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1             | Characterisation of PEFB                                                                                                                                  | Suggestion of carbon properties required |
| (less than    | <ul> <li>To obtain properties of PEFB</li> </ul>                                                                                                          | for energy storage application           |
| 12<br>months) | <ul> <li>PEFB with steam pretreatment<br/>(from oil extraction industry)</li> <li>PEFB with no pretreatment</li> </ul>                                    |                                          |
| 2             | Carbonisation of washed PFEB to obtain                                                                                                                    | Evaluation of char prepared by MTEC as a |
|               | char                                                                                                                                                      | component in a Lithium-ion battery and a |
|               | • To study the effect of carbonisation                                                                                                                    | supercapacitor                           |
|               | <ul> <li>temperature on properties of PFEB char</li> <li>To compare the char properties obtained from PEFB with and without steam pretreatment</li> </ul> |                                          |





## **Research Plan (cont.)**

| Year | MTEC/NSTDA                                                                                          | Kyoto University                            |
|------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|
| 3    | Hydrothermal carbonisation of PFEB to                                                               | Evaluation of hydrochar prepared by MTEC    |
|      | obtain hydrochar                                                                                    | as a component in a Lithium-ion battery and |
|      | • To study the effect of carbonisation                                                              | a supercapacitor                            |
|      | temperature and pressure on                                                                         |                                             |
|      | properties of PFEB hydrochar                                                                        |                                             |
|      | • To compare the hydrochar properties obtained from PEFB with and without steam pretreatment        |                                             |
|      | • To compare the properties of hydrochar and char obtained from HTC and carbonisation, respectively |                                             |







## **Research Plan (cont.)**

| Year | MTEC/NSTDA                                                                                                                                                                                                                                | Kyoto University                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 4    | <ul> <li>Physical activation of hydrochar to produce good qualities of activated carbon</li> <li>To study the role of CO<sub>2</sub> in enhancement of porosity</li> <li>To study the role of steam in enhancement of porosity</li> </ul> | Evaluation of activated carbon prepared by<br>MTEC as a component in a Lithium-ion<br>battery and a supercapacitor |
| 5    |                                                                                                                                                                                                                                           | Evaluation of activated carbon prepared by<br>MTEC as a component in a Lithium-ion<br>battery and a supercapacitor |