

Collaboration of NANOTEC/NSTDA and Kyoto University under JASTIP

Dr. Kajornsak Faungnawakij and team National Nanotechnology Center (NANOTEC), NSTDA

Assoc.Prof. Noriaki Sano and team

Dept of Chemical Engineering, Kyoto University

Joint Project Title

Innovations in Biomass Application for Catalytic Material Synthesis and Energy Devices

Members Period: 5 years

Thailand

Dr. Kajornsak Faungnawakij (NANOTEC, NSTDA) (PI)

Dr. Vorranutch Itthibenchapong (NANOTEC, NSTDA)

Dr. Pongtanawat Khemthong (NANOTEC, NSTDA)

Dr. Pussana Hirunsit (NANOTEC, NSTDA)

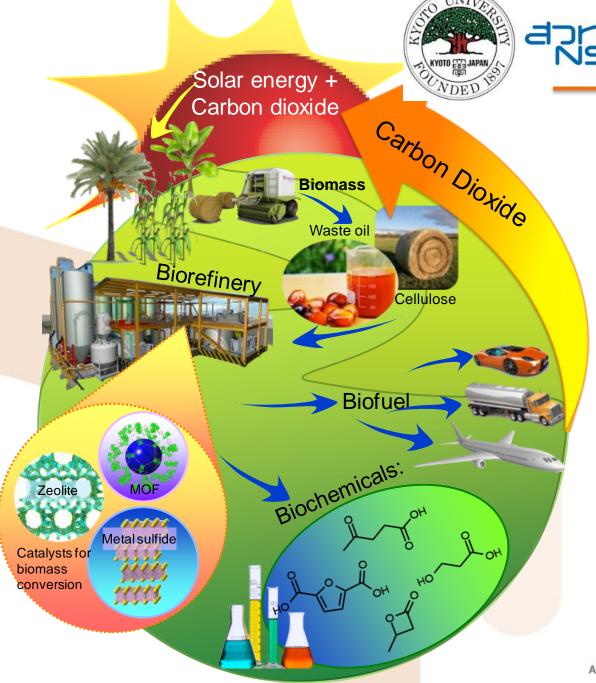
Dr. Supawadee Namuangruk (NANOTEC, NSTDA)

Dr. Chompoonut Rungnim (NANOTEC, NSTDA)

Ms. Chuleeporn Luadthong (NANOTEC, NSTDA)

Ms. Rungnapa Kaewmeesri (NANOTEC, NSTDA)

Assoc.Prof.Tawatchai Charinpanitkul (Chulalongkorn Univ.)


Asst.Dr.Thongthai Witoon (Kasetsart Univ.)

Dr. Weerawut Chaiwat (Div of Engineering, Mahidol University)

Assoc.Prof.Dr. Prasert Pavasant (School of Energy Science and Engineering, VISTEC)

<u>Japan</u>

Assoc.Prof. Noriaki Sano (Kyoto University) (PI) Research team from Dept of Chem Eng.

Nanocatalysis for
Green Biorefinery
towards Materials,
Biochemicals, and

Biofuels

Objectives

To realize a sustainable systems for energy and material synthesis

- New synthesis methods of carbon-based nanomaterials and multifunctional catalysts using the hydro/thermo chemical conversion of biomass, reducing algae, and arc discharge technique.
- Development of non-precious metal or hybrid nanocatalysts for catalytic conversion of biomass to biochemicals such as furans, organic acids, fuel-like alkanes, biodiesel and fuel additives
- Development of carbon nanohorn-based catalysts for biodiesel production
- Development of electrodes for glucose fuel cell
- Development of hydrogen storage medium using nanoparticles
- Study the reaction behaviors and mechanisms via combined experimental and theoretical investigation

Expected Outcomes

Advancement of science and technology in the field of renewable energy and environment via strong and sustain international networking between NSTDA and Kyoto University

Expected Outputs

- Research articles in international-peer reviewed journals (at least 5 papers in 5 years)
- Researcher exchanges between Thailand and Japan
- Research Exchange Seminar/Workshop for international networking and knowledge sharing

Overview R&D of the joint project

Material development

Active carbons from biomass

Nanostructured Multifunction catalysts

Carbon nanohorns

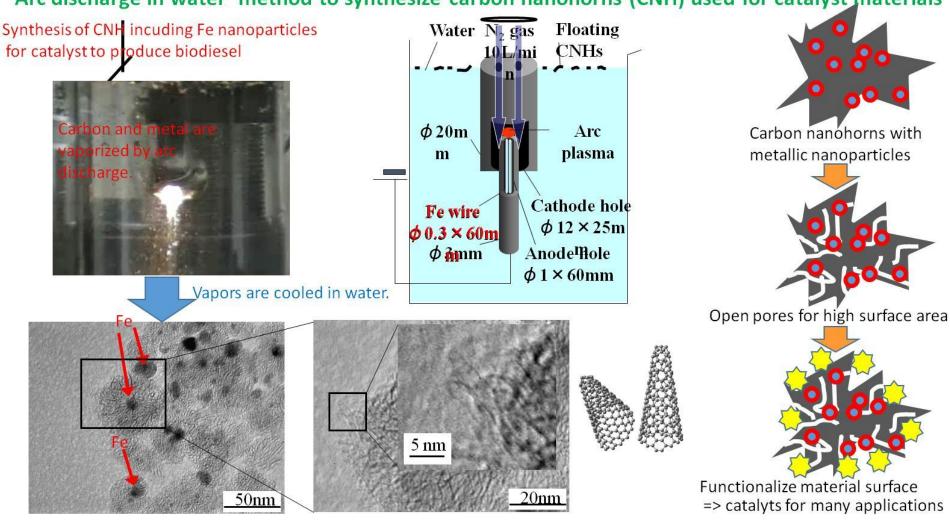
Metal Nanoparticle Carbon nanotubes on electrode

Catalysts for production of biochemicals from biomass

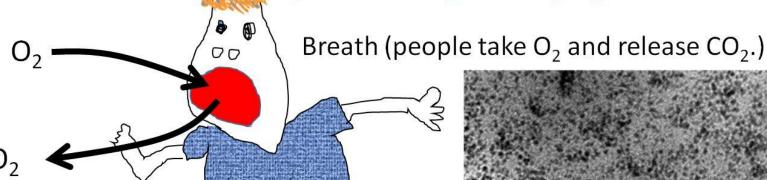
Catalysts for production of biofuels from oils and fats

Novel electrode for glucose fuel cell

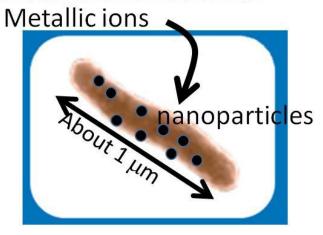
Hydrogen storage

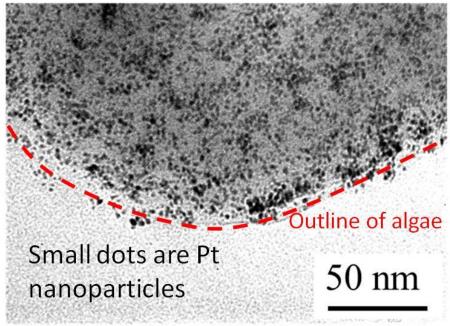

SANO's team

'Arc discharge in water' method to synthesize carbon nanohorns (CNH) used for catalyst materials



SANO's team



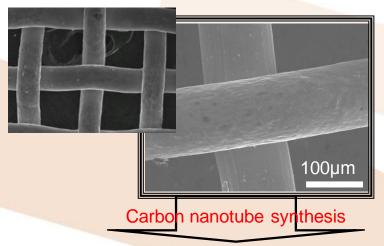

Synthesis of functional nanoparticles using reducing algae

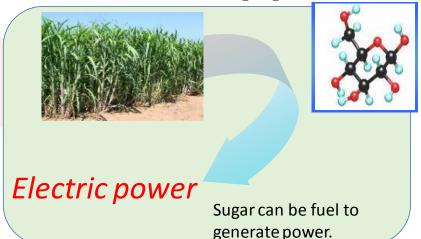
Reducing algae take metallic ions and produce nanopartciels for breathing.

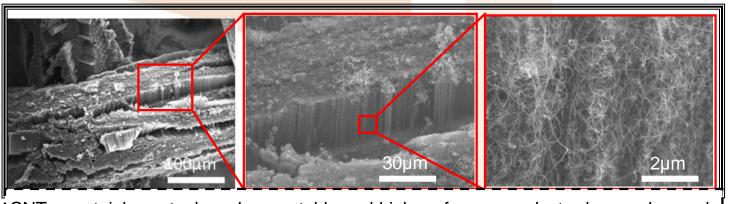
Shewanella algae

Pt nanoparticles synthesized by bioreduction of Shewanella algae => Useful to make catalysts

SANO's team



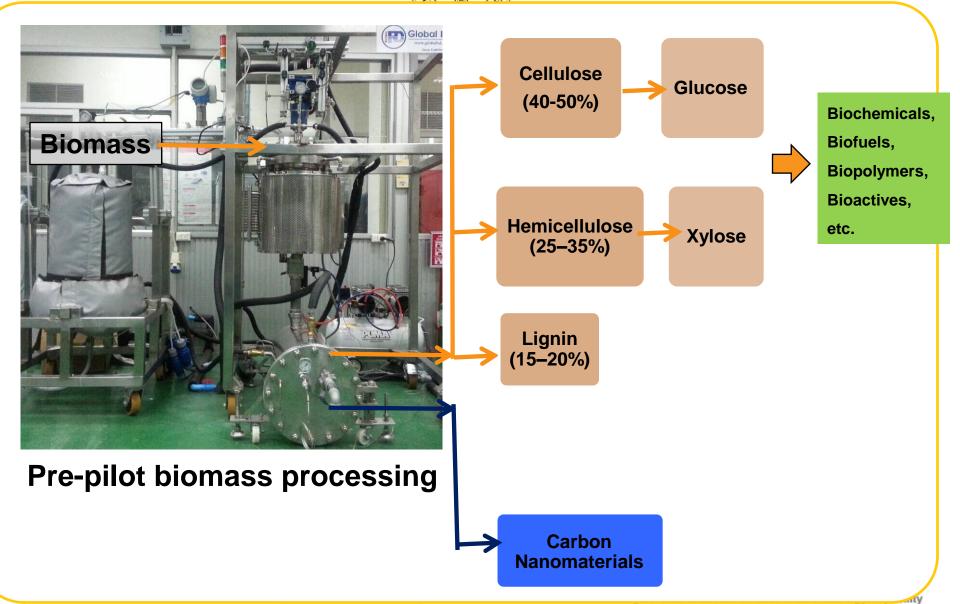



Synthesis of carbon nanotubes on electrode for catalyst support for glucose fuel cell

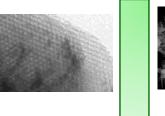
Anode: $C_6H_{12}O_6+2OH^- \rightarrow C_6H_{12}O_7+H_2O+2e^-$

Cathode: $1/2O_2+H_2O+2e^-\rightarrow 2OH^-$

Catalyst support for many applications.


CNTs on stainless steel mesh => stable and high surface area electrodes can be made

NANOTEC's team



NANOTEC's team

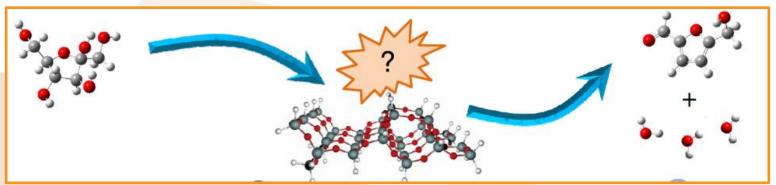
Palm oil/Animal fat/Biomass derivatives

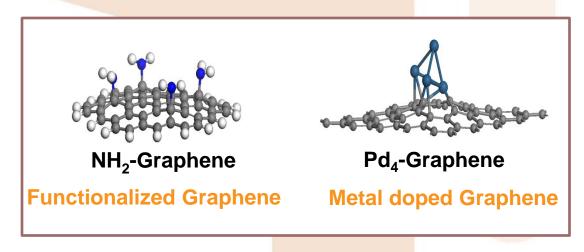
Multifunctional nanocatalysts

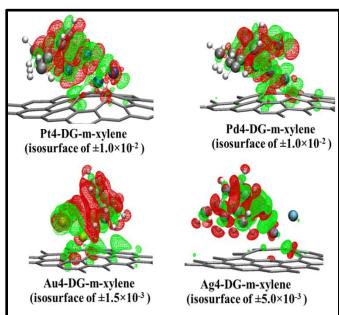
materials

Packs of high-pressure and low-pressure

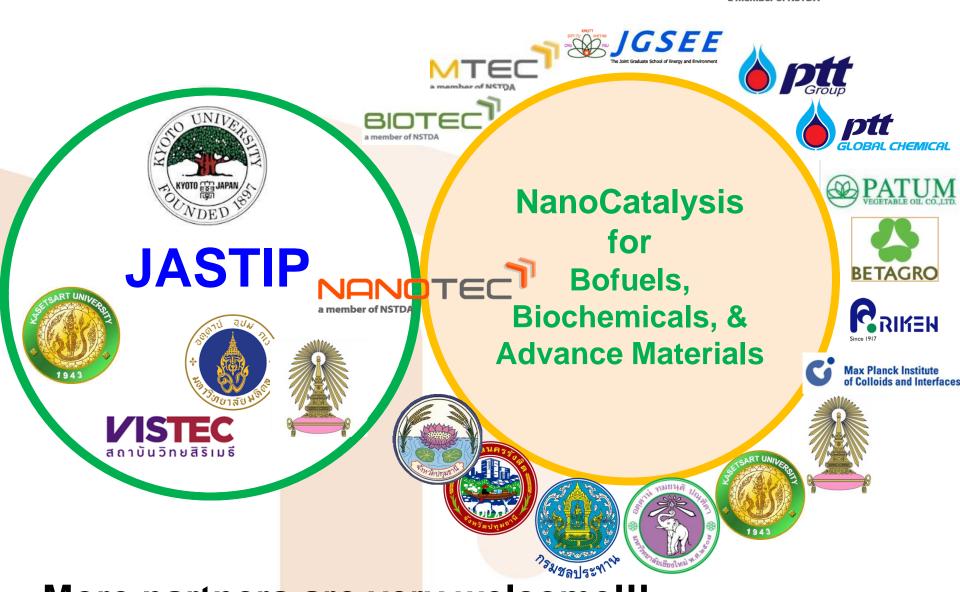
continuous processes




NANOTEC's team



Materials design and reaction/sorption mechanism study by simulation



A Driving Force for National Science and Technology Capability

Strong networking

More partners are very welcome!!!

Res	earch Plan	
	Faungnawakij's group (NANOTEC/NSTDA)	Sano's group (Kyoto University)
1st year	Phase 1:	Explore conditions for synthesis of nano particles for fuel
	Explore conditions and apparatus set-up for synthesis of nanocatalysts	cell electrodes, biodiesel production catalysts, hydrogen
	for catalytic conversion of biomass and biomass derivatives	storage.
	to materials and biochemicals	Explore conditions for measurement of hydrogen storage
	Study the reaction behaviors and mechanisms via combined	Receive PhD student from Faungnawakij's group to support
	experimental and theoretical investigation	biomass conversion experiment
	Visit Kyoto University for joint seminar	Host NANOTEC team for joint seminar
2 nd year	Phase 1:	Explore conditions for synthesis of nano particles for fuel
	Development of catalysts/adsorbent and process for catalytic conversion	cell electrodes, biodiesel production, hydrogen storage.
	of biomass and waste to carbon-based materials	Conduct experiment for hydrogen storage, electric power
	Development of metal nanocatalysts for catalytic conversion of biomass	generation by fuel cells
	to biochemicals, including sugar, furans, and organic acids	Receive PhD student from Faungnawakij's group to support
	Testing of the catalysts from Sano'Group for continuous biodiesel	biomass conversion experiment (till July)
	production process	Synthesis of catalyst for sending to Faungnawakij's group
	Study the reaction behaviors and mechanisms via combined experimental	for continuous biodiesel production process, and detail
		structural analysis on this catalyst
3 rd year	Phase 1:	Explore conditions for synthesis of nano particles for fuel
	•	cell electrodes, biodiesel production, hydrogen storage.
	carbon-based materials	Conduct experiment for hydrogen storage, electric power
	Optimization of the catalytic conversion of biomass to biochemicals,	
	including sugar, furans, and organic acids	Synthesis of catalyst for sending to Faungnawakij's group
	Testing of the catalysts from Sano'Group for continuous biodiesel	• •
	1	structural analysis on this catalyst
	Testing of the catalysts from the PhD student working in Sano'Group for	Synthesis of catalyst for sending to Faungnawakij's group
	4	for continuous biomass conversion process and detail structural
	Study the reaction behaviors and mechanisms via combined experimental	analysis on this catalyst
	and theoretical inve <mark>stigation</mark>	Receive PhD/Master student/Researcher from
	Receive PhD/Master student/Researcher from Sano's group to support	Faungnawakij's group to support biomass conversion
	biomass conversion experiment	experimenting Force for National Science and Technology Capability
	Host Kyoto Univ team for joint seminar	

Research Plan

	Faungnawakij's group (NANOTEC/NSTDA)	Sano's group (Kyoto University)
4 th year	Phase 2:	Optimization of alloy components for hydrogen storage, fuel
	Development of catalysts and process for catalytic conversion of	cell catalyst, and biofuel synthesis catalyst.
	biomass and waste to biofuels and fuel additives	Development of mass production methods for synthesizing
	Study the reaction behaviors and mechanisms via combined	the catalyst for continuous biodiesel production
	experimental and theoretical investigation	Receive PhD/Master student /Researcher from
		Faungnawakij's group to support biomass conversion
		experiment
5 th year	Phase 2:	Optimization of alloy components for hydrogen storage, fuel
	Optimization of the catalysts and process for catalytic conversion of	cell catalyst, and biofuel synthesis catalyst.
	biomass and waste to biofuels and fuel additives	Development of mass production methods for synthesizing
	Study the reaction behaviors and mechanisms via combined	the catalyst for continuous biomass conversion
	experimental and theoretical investigation	
	Receive PhD/Master student /Researcher from Sano's group to support	
	biomass conversion experiment	
	Host Kyoto Univ team for joint seminar	
	Propose a sustainable system for materials synthesis and energy using bio	omass and bio activities

