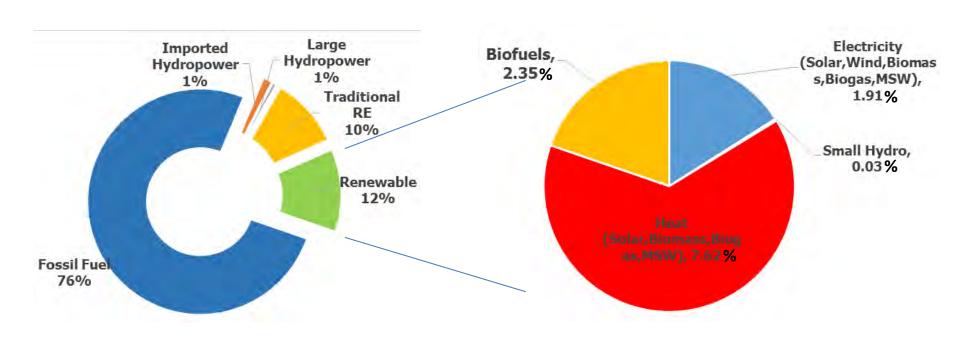
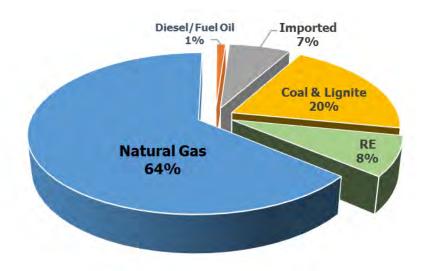
R&D on biomass and policy in Thailand

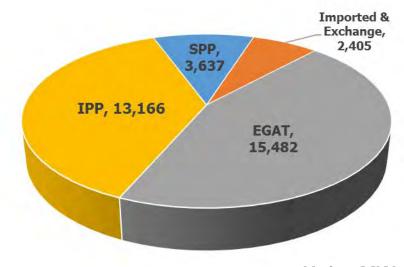
Dr. Boonrod Sajjakulnukit JGSEE, KMUTT

JASTIP kick-off workshop Feb.29 NSTDA, TSP



Thailand's Energy Situation


Thailand Final Energy Consumption 2014


Final Energy Consumption

Renewable Energy Consumption

Power Generation by Fuel Type in 2014

Unit: MW

Power Generation by Fuel Type

Power Generation by Producer

Energy Policy

Thailand's Energy Policies

General Prayuth Chan O-cha Prime Minister

✓ Secure Thailand Energy supply

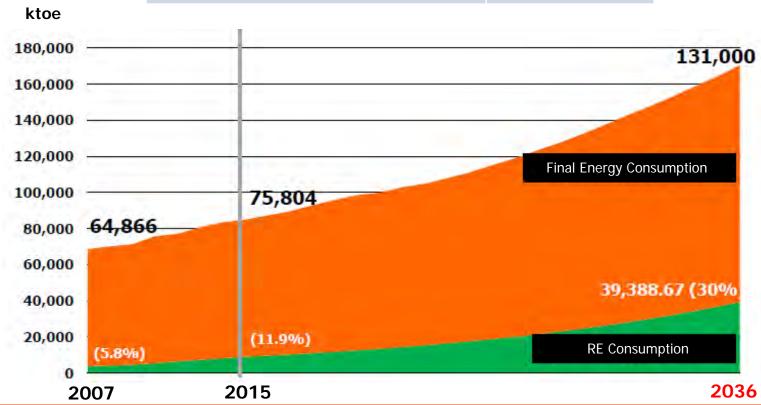
- Exploration and production of natural gas and crude oil both in the sea and on land
- More new power plant by government agencies and private organizations
- Increase the use of renewable energy
- International energy development cooperation

✓ Fair Energy Pricing

- Energy price restructure
- Appropriate tax between different types of oil

✓ Energy conservation

- More efficient use of energy
- Awareness of consumer



Alternative Energy Development Plan (AEDP) 2015-2036

Alternative Energy Development Plan (AEDP) 2015-2036

Goal: Target 30% renewables in Total Energy Consumption by 2036

Target	ktoe
RE Consumption (ktoe)	39,388.67
Final Energy Consumption (ktoe)	131,000
RE share (%)	30%

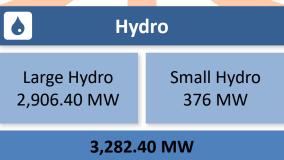
Alternative Energy Development Plan (AEDP) 2015-2036

Foundation: Commitment to the development of a low-carbon society

Facilitator: Private-led

investment

Strategy: Alternative Energy Development Plan 2015-2036


Facilitator:
Government
funded RD&D

Goal: Target 30% renewables in Total Energy Consumption by 2036

	Bio-Energy	
Biomass	Biogas	MSW + Industrial Waste
5,570 MW	1,280 MW	550 MW
22,100 ktoe	1,283 ktoe	495 ktoe
6,720 MW	/ Power 23,878	Ktoe Heat

Bio-Fuel							
Ethar	nol	Biodi	odiesel Py		Pyrolysis Oil		
11.3 MI	_/Day	14 ML/Day		0.53 ML/Day			
	С	CBG		uels*			
	4,800	t/Day	10 k	toe			

Solar Solar	≋ Wind			
6,000 MW	2 002 8484			
1,200 Ktoe	3,002 MW			
9,002 MW Power 1,200 Ktoe Heat				

Power Generation Sector: Status & target

RE Technology	Year 2014 (MW)	Target in 2036 (MW)
1. MSW	65.7	500
2. Industrial Waste	-	50
3. Biomass	2,451.8	5,570
4. Biogas	311.5	600
5. Small Hydro Power	142	376
6. Biogas from Energy Crops	-	680
7. Wind	224.4	3,002
8. Solar PV	1,298.5	6,000
9. Large Hydro Power	<u>-</u>	2,906.4
Total	4,494	19,684.4
RE Share in Power Sector	9%	20%

Heat Sector: Status & target

RE Technology	Year 2014 (ktoe)	Target in 2036 (ktoe)
1. MSW	98.1	495
2. Biomass	5,184	22,100
3. Biogas from Wastewater/Animal Manure	488.1	1,283
4. Solar	5.12	1,200
5. Others*	-	10
Total	5,775	25,088
RE Share in Heat Sector	17%	30-35%

^{*} Other RE sources such as geothermal energy, etc.

Transportation Sector: Status & target

DE Tochnology	Year 2014	Target in 2036		
RE Technology	(ML/day)	(ML/day)	(ktoe)	
1. Biodiesel	2.89	14	4,404.8	
2. Bioethanol	3.21	11.3	2,103.5	
3. Pyrolysis-Oil	-	0.53	170.8	
4. Compressed-Biomethane Gas (tons/day)	-	4,800	2,023.2	
5. Other Alternative Fuels*	-		10	
Total	6.1		8,712.4	
RE Share in Transportation Sector	7%		20-25%	
	<u> </u>			

^{*} Other alternative fuels such as hydrogen, bio-oil, etc.

Main Activities

Electricity

Area-based RE power generation target must be related to RE potential (RE Grid Capacity)

Develop and support for power generation from unutilized fuel (e.g. agricultural waste, industrial waste, fast growing crop)

Support competitive bidding for power purchasing system

Heat

Promote and support RDF transformation for municipal waste management

Promote and support biomass-derived fuel (e.g. biomass pellet, bio-coal)

Support biogas generation from waste water or solid waste

Promote heat utilization in building by building code establishing

iofue

Promote utilization of B10, B20 in both transportation and industrial sector

Promote gasohol utilization

Promote CBG utilization for vehicle and industry

Promote biofuel production efficiency improvement

Feed-in Tariff Scheme

	Fi	T (THB/kW	h)		FiT Premiu	ım (THB/kWh)
Capacity (MW)	FiT _F	FiT _{V,2017}	FiT ⁽¹⁾	Period of Subsidy (Year)	Biofuel Project (8 years)	Project in Southern Territory Area (Throughout Project Period)
1) MSW (Hybrid Management))					
Existing Capacity ≤ 1 MW	3.13	3.21	6.34	20	0.70	0.50
Existing Capacity > 1-3 MW	2.61	3.21	5.82	20	0.70	0.50
Existing Capacity > 3 MW	2.39	2.69	5.08	20	0.70	0.50
2) MSW (Sanitary Landfill)	5.60	-	5.60	10	-	0.50
3) Biomass						
Existing Capacity ≤ 1 MW	3.13	2.21	5.34	20	0.50	0.50
Existing Capacity > 1-3 MW	2.61	2.21	4.82	20	0.40	0.50
Existing Capacity > 3 MW	2.39	1.85	4.24	20	0.30	0.50
4) Biogas (Waste Water/Sewage)	3.76	-	3.76	20	0.50	0.50
5) Biogas (Energy Crop)	2.79	2.55	5.34	20	0.50	0.50
6) Hydropower						
Existing Capacity ≤ 200 kW	4.90	-	4.90	20	-	0.50
7) Wind	6.06	-	6.06	20	-	0.50

Biomass Energy Promotion

Biomass Potential

Biomass potential data	Remain B	Remain Biomass (at year 2014)		Remain I	Biomass incl	. Agri. Plan
Type of biomass	Ton/y	ktoe	Existing (MW)	Ton/y	ktoe	Existing (MW)
Rice husk	432	0.14	0.05	432	0.14	0.05
Rice straw	4,124,630	1,204	461	4,124,630	1,204	461
Sugar cane and leaf	2,928,140	1,073	411	5,265,619	1,929	738
Bagasse	-	-	-	21,280,000	3,712	1,421
Corn cob	80,889	18	7	80,889	18	7
Corn trunk	3,369,690	784	300	3,369,690	784	300
Cassava rhizome	2,838,125	369	141	3,372.560	439	168
Cassava trunk	1,052,636	388	149	2,084,755	769	294
Oil palm frond	14,606,671	2,265	867	33,586,191	5,208	1,993
Oil palm fiber	-	-	-	2,944,803	795	304
Oil palm shell	-	÷	-	619,959	248	95
Oil palm empty fruit bunch	606,541	104	40	1,402,455	240	92
Para wood root	1,411,834	287	110	1,411,834	287	110
Coconut shell	79,678	31	12	79,678	31	12
Coconut fiber	71,875	27	10	71,875	27	10
Coconut bunch and frond	249,026	91	35	249,026	91	35
Total	31,420,166	6,642	2,542	79,944,394	15,783	6,040

Biomass Plan

Promote the community scale biomass power generations by

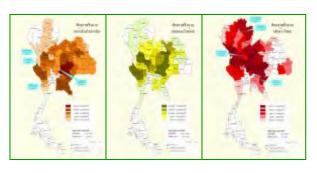
- establishing community enterprises to co-manage the operation and fuel supply;
- identifying suitable technologies, for example gasifiers, for community scale power generation; and
- formulating necessary incentives for promotion of their uses.

Promote biomass power development by

- providing new incentives to developers such as different rate Adder based on technology and size;
- expansion of national grid; and
- Creation of public participation.

Promote R&D on Biomass technologies, i.e

- plantation of fast growing plants;
- harvesting and collection;
- transformation and logistics such as pellets and briquetting.


Next Step for Biomass

Encourage biomass utilization

- substitute fossil fuel in local industry and in community
- increase the utilization of unused biomass.
- improve the energy efficiency in agro industry

Promotion & Support

- update and provide biomass potential map
- develop biomass excellent center
- financial support and co-promote CDM activities
- develop the biomass collection and transportation system

R&D

- encourage biomass transformation : pellet
- biomass to liquid technology
- high efficiency biomass technology

Renewable energy class detail: *Biomass*

Development initiatives

- Promote plantation of fast growing trees that can be used as feedstock for power/heat generation
- Develop production and standard of biomass pellets for future biomass fuel
- Develop advanced gasifier and gas engine technology as well as biomass-to-liquid (BTL) technology
- Promote use of high pressure boilers to improve efficiency of power generation from biomass
- Promote Distributed Green Generation (DGG) community level biomass energy
- Coordinate with EGAT to develop necessary transmission and distribution infrastructure

Promote and Support for Establishing of Distributed Green Generation (DGG) Project

Promote and Support for Establishing of Distributed Green Generation (DGG) Project

Project initiatives

- ❖ Farmer in the northeast area of Thailand have cultivated a great deal of fast growing tree, such as Eucalyptus, Acacia, etc., and communities have high potential to establish for cooperative.
- Limitation of national transmission line.

Project objectives

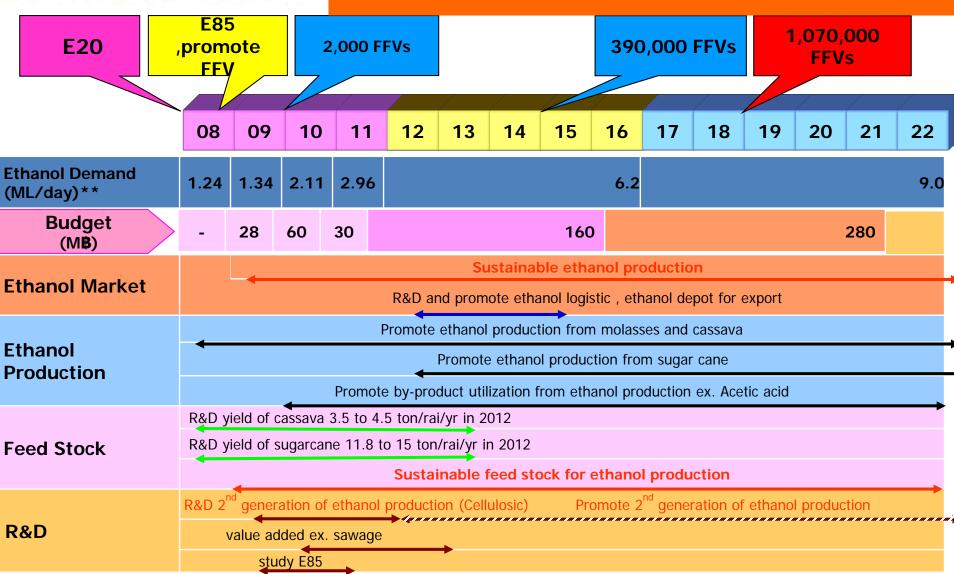
- To promote and support high potential communities to be established as a distributed green generation station
- To demonstrate DGG model, and determine the method for model distribution to other efficient communities.

Promote and Support for Establishing of Distributed Green Generation (DGG) Project

Target Demonstration Sites

- 1. Community DDG Station: Jaturas District, Chaiyaphoom
- 2. Community DDG Station: Phu Wieng District, Khon Kaen
- 3. Sum-Soong Community DDG Station: Sum-Soong District, Khon Kaen
- 4. Bann None Sawang Community DDG Station: Muang District, Nong Bua Lamphoo
- 5. None Sanguan Community DDG Station: Sri Boonruang District, Nong Bua Lamphoo
- Green Energy Crop Community Enterprise DDG Station: Sri-Tart District, Udon Thani
- 7. Phai Sub-district DDG Station: Muang District, Kalasin
- 8. Poh-Sri DDG Station: Poh-Chai District, Roi-Et
- 9. Kam Kuen Kaew DGG Station: Sirindhorn District, Ubon Rachathani
- Seesuk-Seelakor Community Enterprise DGG Station: Chakkarat District,
 Nakhon Ratchasima

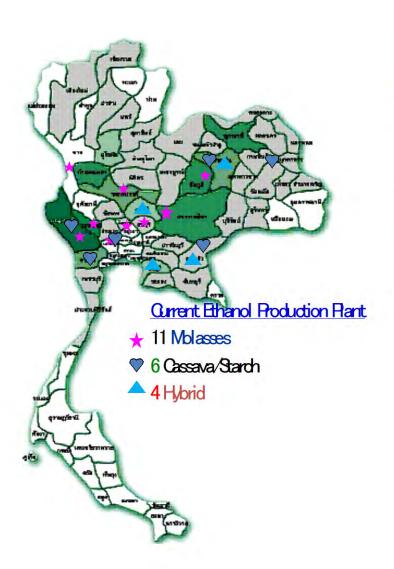
Promote and Support for Establishing of Distributed Green Generation (DGG) Project

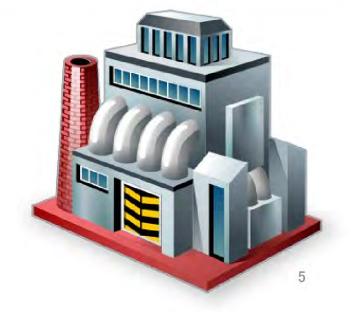

Example of DGG management concept

Site: None Sanguan DDG Station: Nong Bua Lamphoo Province



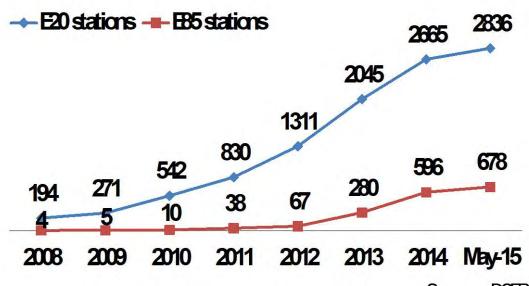
Ethanol Development Plan 2008 - 2022


Thailand Ethand Feedstock - 2014


1 Hectar = 6.25 Rai

Ethand production capacity

Feedstock	No. of plants	Total cap. (M/day)
Molasses	10	226
Cassava	7	1.455
Mblasses and Cassava	5	1.25
TOTAL	22	4.965



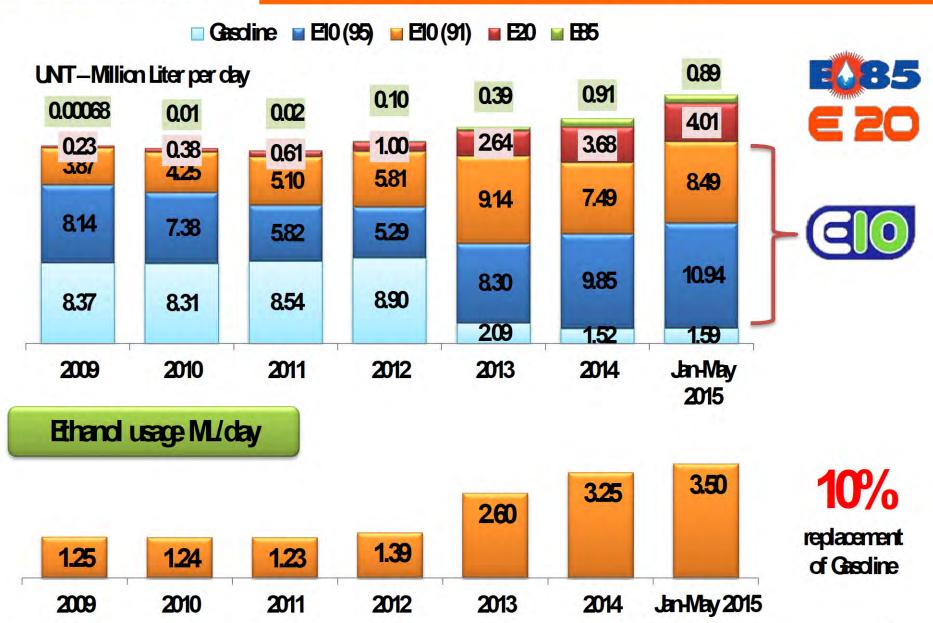
Geschol fuel stations and vehicles

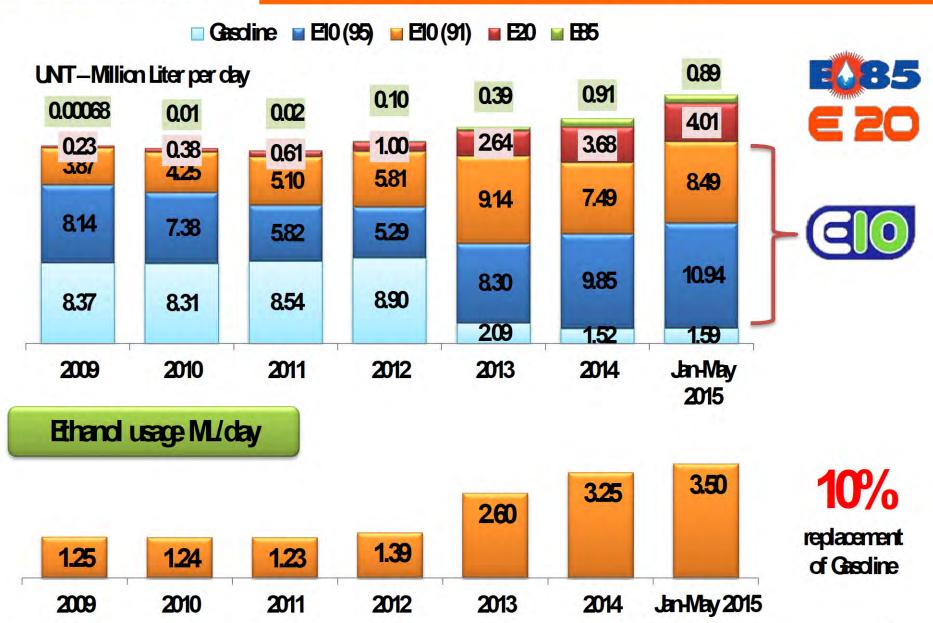
El0 stations are well spread over Thailand

Sources-DOEB

Most cars manufactured since 1995

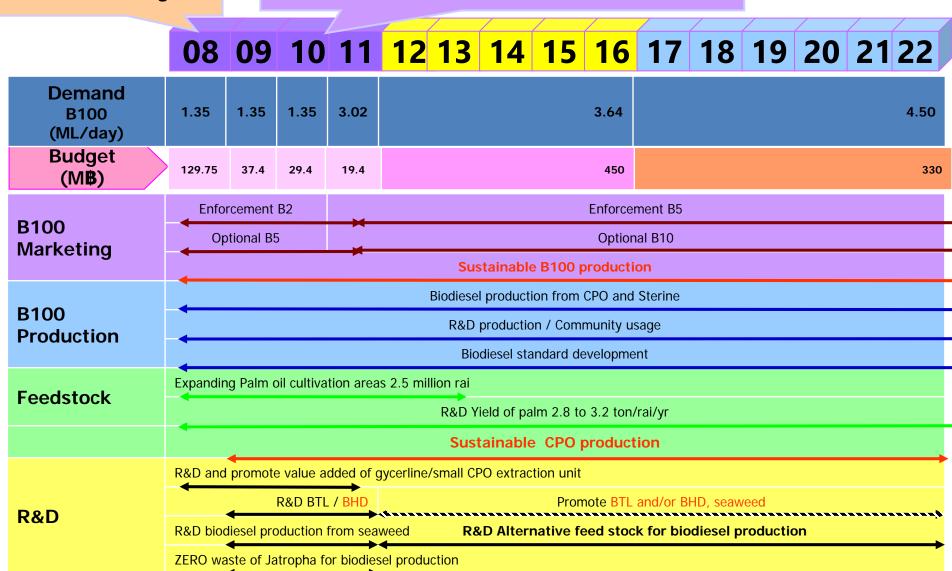
Most cars manufactured since 2008





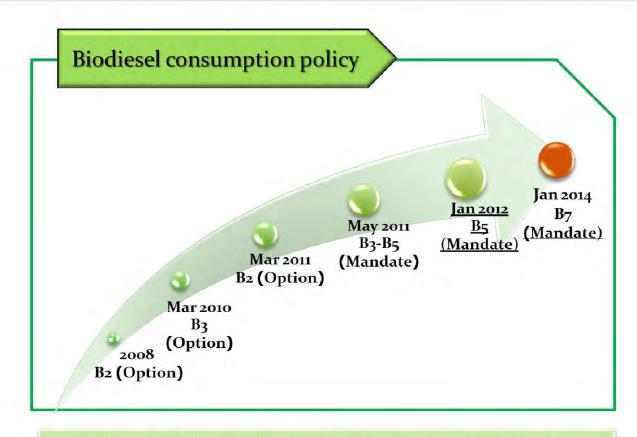
Ethand uses

Ethand uses



Biodiesel Development Plan 2008 - 2022

Research on Biodiesel with fish boat Engines


B5 nationwide, B10 optional

Bodiesel

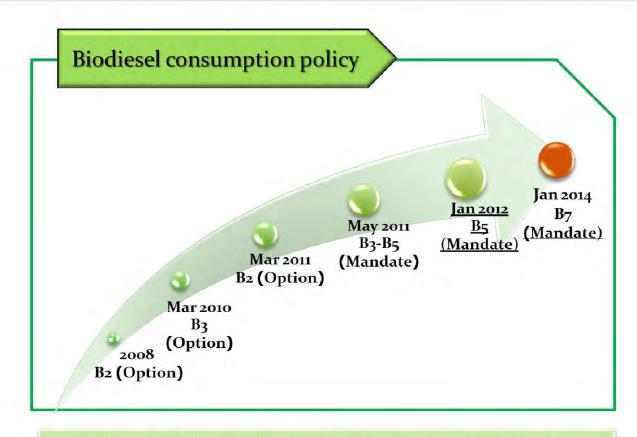
Historically implemented policies

Dept. of Energy Business has announced policy

⇒ Biodiesel B7 (7% B100 blended)

⇒ since January 2014

Biodiesel Fatty acid methyl ester



Biodiesel Fuel

Bodiesel

Historically implemented policies

Dept. of Energy Business has announced policy

⇒ Biodiesel B7 (7% B100 blended)

⇒ since January 2014

Biodiesel Fatty acid methyl ester

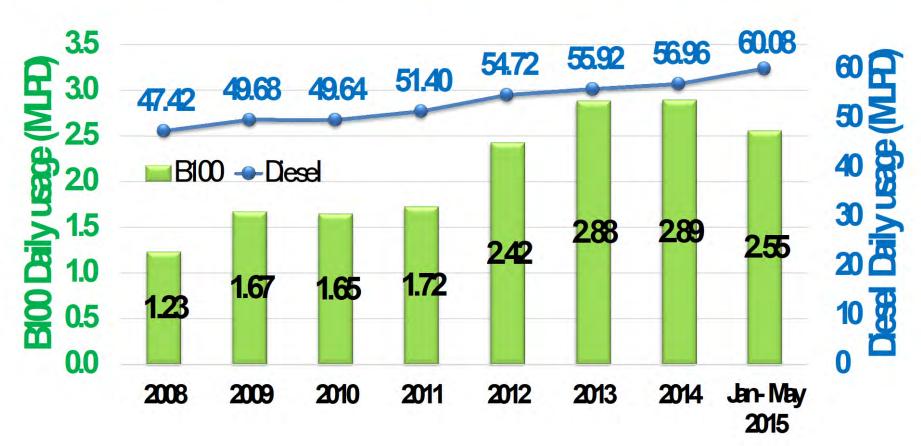
Biodiesel Fuel

Bodiesel production capacity

ยะถา นราธิวาส

	Registered capacity		
Feedstock	No. of factories	Capacity (ML/day)	
CFO/REDFO/Palmstearin	9	4.56	
Palmstearin	2	0.40	
Total	11	4.96	

9 CPO/RBD/Stearine



Bodiesel usage

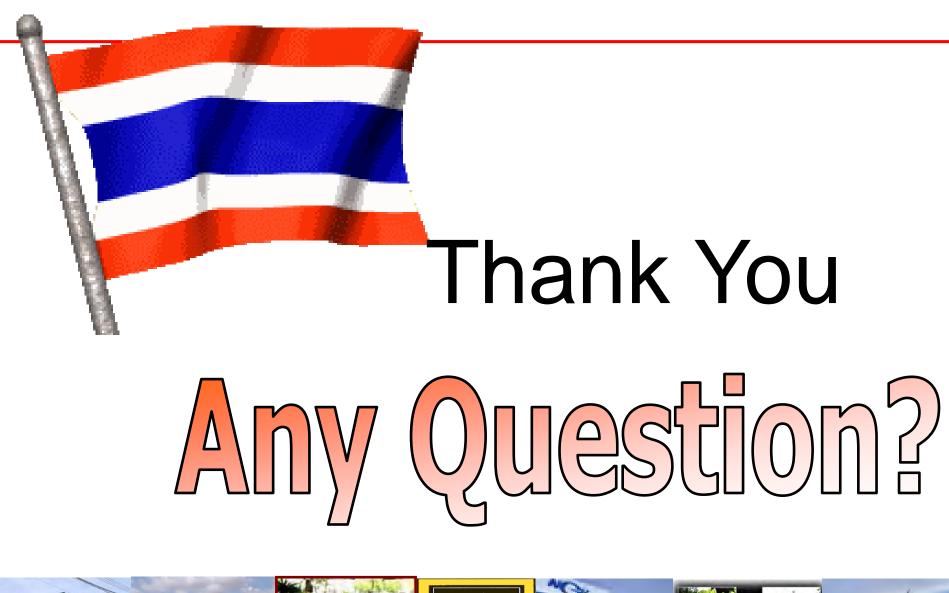
Thailand mandated 7% bicoliesel (B7) blend for every liter of diesel sold since Jan 2014

Conclusion on Biomass and Biofuels R&D

MOU between MOST and MOEN

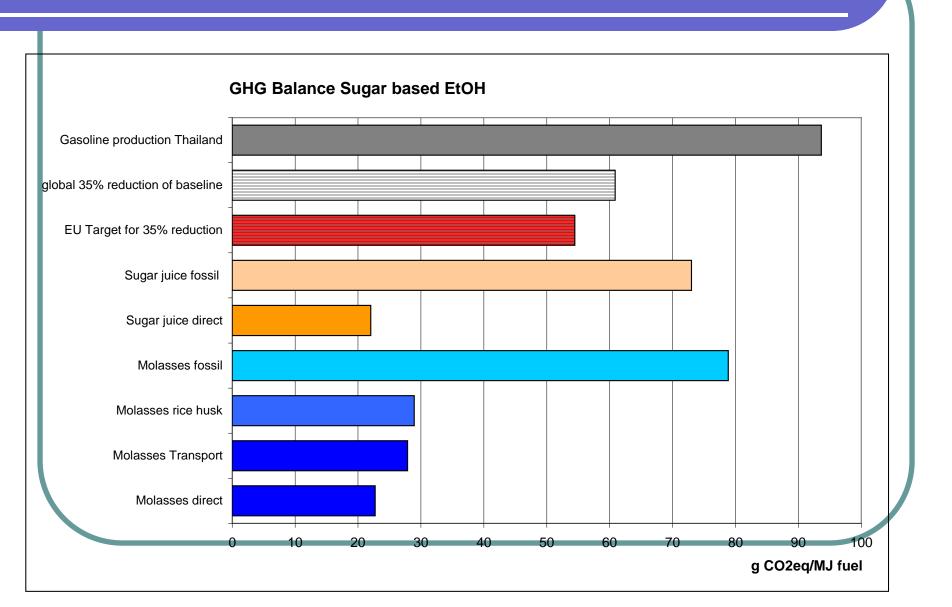
Biomass

- Characteristics
- Logistic
- Property Improvements
 - Size reduction
 - Drying
 - Torrefaction
 - Densification; Briquette, Pellet

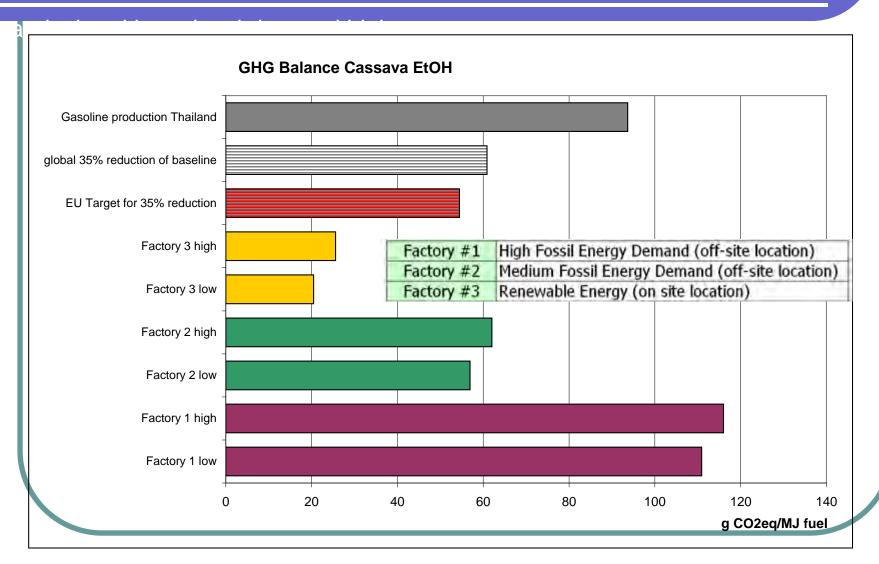

- Technology Development, Small Scale
 - Co-fuels combustion
 - Gasification, both for heat and power

Biogas

- Efficiency Improvement
- Co-digestion
- Cleaning equipment
- Upgrading to CBG


Biofuels

- Yield improvement of raw materials
- Logistic of raw materials
- Cost reduction on conversion process
 - Yeasts, Enzyme, Catalysts, Energy Use, Retention time.
- Added values for wastes or coproducts.
- Logistic of products.
- Development of small scale production for Biodiesel.
- Sustainability Criteria and LCA.
- Advance Biofuel Technologies.



GHG emissions results

bioethanol*

^{*} Final values in g CO2eq per MJ of cassava-ethanol for agriculture, transport, processing and refining but without CC or LUC

GHG emissions results

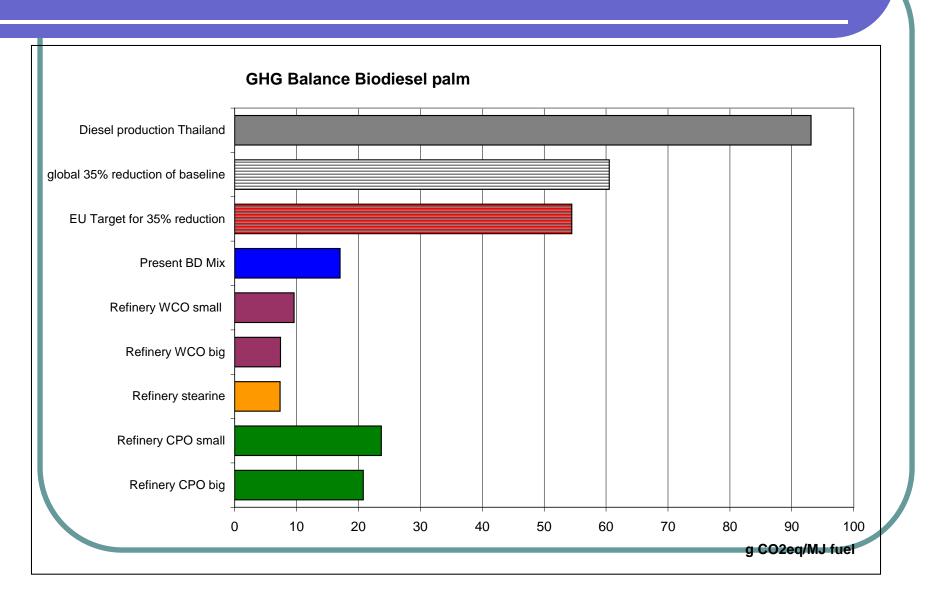


Table 2: Land-use efficiency of different biofuel crops and expected yield improvements (global averages)

Biofuel type	Yields, 201	0 (litres/ha)	Average improvement per	Resulting yields in 2050	Main co-product, 2010 values,
biolaci type	nominal	Lde or Lge	year, 2010-50	(Lge or Lde/ha)	(Kg/L biofuel)
Ethanol - conventional (average yield of feedstocks below)	3 300	2 300	0.7%	3 000	
Sugar beet	4 000	2 800	0.7%	3 700	Beet pulp (0.25)
Corn	2 600	1 800	0.7%	2 400	DDGS (0.3)
Ethanol - cane	4 900	3 400	0.9%	4 800	Bagasse (0.25)
Cellulosic-ethanol - SRC*	3 100	2 200	1.3%	3 700	Lignin (0.4)
Biodiesel - conventional (average yield of feedstocks below)	2 000	1 800	1.0%	2 600	FAME: Glycerine (0.1)
Rapeseed	1 700	1 500	0.9%	2 100	Presscake (0.6)
Soy	700	600	1.0%	900	Soy bean meal (0.8)
Palm	3 600	3 200	1.0%	4 800	Empty fruit bunches (0.25)

	Yield (gross) Giga joule per hectare per year	Required agricultural land To replace a quarter of the current global demand for transportation fuels (2) In percentage points of what is available globally (3)	
Sugar cane	104	17	
Sugar beet	90	20	
Palm oil	81	22	
Maize	54	33	
Wheat	45	40	
Barley	20	91	
Rape	20	91	
Sunflowers	16	111	
Soy beans	9	200	

from: Biomass for food or fuel: Is there a dilemma? Louise O. Fresco. Amsterdam University. The Duisenberg Lecture, Singapore 19 September, 2006

Table 2.2 Indication of land required for the production of biomass (1) (Cramer 2007).

^{(2) 45} EJ/year

^{(3) 2.5} billion ha

Crop	kg oil/ <u>ha</u>	litres oil/ <u>ha</u>	lbs oil/acre	US gal/acre
corn (maize)	145	172	129	18
cashew nut	148	176	132	19
oats	183	217	163	23
cotton	273	325	244	35
hemp	305	363	272	39
soybean	375	446	335	48
linseed (flax)	402	478	359	51
hazelnuts	405	482	362	51
pumpkin seed	449	534	401	57
mustard seed	481	572	430	61
camelina	490	583	438	62
sesame	585	696	522	74
safflower	655	779	585	83
sunflower	800	952	714	102
cocoa (cacao)	863	1,026	771	110
peanuts	890	1,059	795	113
rapeseed (Canola)	1,000	1,190	893	127
olives	1,019	1,212	910	129
castor beans	1,188	1,413	1,061	151
jojoba	1,528	1,818	1,365	194
jatropha	1,590	1,892	1,420	202
macadamia nuts	1,887	2,246	1,685	240
Brazil nuts	2,010	2,392	1,795	255
avocado	2,217	2,638	1,980	282
coconut	2,260	2,689	2,018	287
oil palm	5,000	5,950	4,465	635

Table 2.1 - Yields for Various Vegetable Oil Sources (Wikipedia 2007)