

Asoc.Prof. Thumrongrut (RUT) Mungcharoen, PhD.

Chairperson, Energy and Environment Cluster and Director, Sustainable Environment P National Science and Technology Development Agency (NSTDA) Ministry of Science and Technology (MoST)

NSTDA at a glance

- Establishment: December 1991 by Science and Technology Development Act, 1991, as an autonomous government agency
- Vision: "NSTDA is a key partner towards a Knowledge-based Society using science and technology."

© NSTDA IAC 2015 Meeting www.nstda.or.th

Mission: S&T Infrastructure

THAILAND SCIENCE PARK Infrastructure to support S&T Development

- Established in 2002 as Thailand First & Fully Integrated Hub for R&D
- Houses Headquarter of National Science and Technology Development Agency (NSTDA) and its 4 National Research Centers plus more than 70 technology companies
 Objectives:
 - Provide High Quality R&D Space for Public and Private Sector.
 - Incubate Technology Business
 Start-ups
 - Support Linkage between
 Private Companies, NSTDA, and
 Universities.

© NSTDA IAC 2015 Meeting www.nstda.or.th

Mission: S&T Human Resource Development

Mission: Technology Transfer

NSTDA Supporting Mechanisms

Mission: Research and Development

NSTDA Research Programs (2011-2016)

www.nstda.or.th

Roaumap of NSTDA Cluster-based Research

NSTOP

Mission: Research and Development

NSTDA Research Programs (2011-2016)

BIOTEC unit : Research field linked to Energy & Env.

Research units : *at Thailand science park*

BioresourceTechnology Unit

- Agricultural Biotechnology Research Unit
- Food Biotechnology Research Unit
- Medical Molecular Biology Research Unit
- Genome Institute

Research units : BIOTEC's satellite units at universities and government agencies

- Biochemical Engineering and Pilot Plant Research and Development Unit (KMUTT)
- Cassava and Starch Technology Research Unit (KU)
- Medical Biotechnology Research Unit
- Rice Gene Discovery Unit
- Peat Swamp and Rainforest Research Station
- Center of Waste Utilization and Management (KMUTT)
- Center of Excellence for Marine Biotechnology (CU)
- Center of Excellence for Shrimp Molecular Biology and Biotechnology
- Center of Excellence for Molecular Biology and Genomics of Shrimp
- Biomedical Technology Research Center

NANOTEC Research Center

Research Unit

Nano Delivery System (NDS)

Nano-Molecular Target Discovery (TDI)

Hybrid Nanostructure & Nanocomposites (HNN)

Nanomaterials for Energy & Catalysis (NEC)

Nanoscale Simulation (SIM)

Nano Functional Textile (NFT)

Nano Safety & Risk Assessment (SRA)

Integrated Nano System (INS)

Functional Nanomaterials & Interfaces (FNI)

Development Unit

Nano Cosmeceuticals (NCM)

Nano Characterization (NCL)

Engineering & Manufacturing (ENM)

Mission: Research and Development

NSTDA Research Programs (2011-2016)

www.nstda.or.th

Roaumap of NSTDA Cluster-based Research

VSTOC

Cluster R&D Promotion on Energy & Environment

Energy & Environment Cluster : NSTDA

1.Sustainable Environment Program

2.Resource & Energy Efficiency Program

3.Renewable Energy & New Energy Technology Program

© NSTDA 2015 www.nstda.or.th

Assessment Technology

Carbon/water footprint/ Eco-eff.

Mitigation Technology

Resource-Energy efficiency

Renewable energy/ Zero emission Technology

Biomass / Biogas / Biofuel/ etc.

LCI /LCA

Enhance Energy Security

> Reduce Env. Impact (GHGs Emission)

Enhance Industrial Competitiveness (Env. & Trade: focus on Agri-Food)

Life Cycle Thinking Concept: throughout value-chain (cradle to grave)

R&D Focus (@ Cluster) on Environment

1. Sustainable Environment Program LCA-EcoDesign Applications (towards Green Growth)

R&D focus (@ Cluster) on Energy

Roadmap of NSTDA Cluster-Based Research

MOU between **Ministry of Energy** and **Ministry of Science** and Technology on the R&D **Cooperation** on **Alternative Energy Development**

Action Plan on the Use of R&D and Innovation for Alternative Energy Development 2012-2016

New Energy
 Wind
 Solar
 Biomass
 Biogas
 MSW
 Ethanol
 Biodiesel
 Diesel Substitute

Organizations involved:

- 5 Ministries (Energy, Science & Techechnology, Agriculture, Industry, Education)
- Research organizations and State Enterprises

•19

During 2012-2016

Prototype of Energy-Efficient Equipment

 Air Conditioner, LPG stove, Motor, Boiler,

etc.

Prototype of Energy-Efficient Biogas Production Technology

- Meet quality and safety international standard
 - Highest efficiency
- Biogas from Cellulosic materials (Industrial/ Agricultural wastes, Fast growing crops)

Prototype of Biomass Utilization Technology for Biofuel Production

- Ethanol from Sugar
 cane & Cassava: meet
 sustainability Criteria
- Ethanol from Cellulosic materials (non-food)
 - Demonstration plant

© NSTDA 2015 www.nstda.or.th

Roadmap of NSTDA Cluster-Based Research

Prototype of Energy- Efficient Equipment

Energy Saving Rice Cooker

Energy Saving: 34 – 61%

Objective

 To develop a field prototype of the energy-saving rice cooker by applying embedded technologies in place of thermostat controlling system.

Types of rice	Electrical energy consumption (unit)		Energy	Electricity bill per year (Baht)		Saved
	Traditional rice cooker	Energy-saving rice cooker	saving (%)	Traditional rice cooker	Energy-saving rice cooker	expense (Baht)
Jasmine rice	0.75	0.46	38.67	1,798.8	1,101.42	694
lasmine brown rice	1.525	0.6	60.65	3,651.46	1,436.64	2,215
White rice	1.27	0.84	33.85	3.040.89	2,011.30	1,030

Improvement on the Performance of High pressure Gas Stove Project

Objective: This project aims at encouraging and supporting the gas cook-stove manufacturers in Thailand to produce high-performance stoves for supplying to the market.

Saving:

LPG price	25	B/kg
Saving 3.76% (15% of total production)	0.94	B/kg
LPG consumption (100%)	7,386	10^3ton/year
Household+industrail (50%)	3,693	10^3ton/year
Money saving	3,470	10^6 Baht/year
LPG saving	139	10^3 ton/year

Energy and Resource Optimization : Tapioca Starch Industry

- Standardization of Water and Energy Use in the Tapioca Starch Industry Project
- Minimization of Resources and Energy in Tapioca Starch Industry A Near Zero Discharge Starch Factory Project
- Having efficient production process
- Utilizing water, energy, and resource efficiently
- Producing high quality product
- Expanding to other starch factories
- Strengthening the starch industry for competitiveness

Saving 20 million \$US annually (32 factories, 2011-2014)

Biogas from Closed-type Anaerobic Reactor

- A highly effective **Closed-type Anaerobic Reactor**.
- It has advantages over the older treatment methods by requiring an installation area only **one fifth** the size of that required for the open wells system.
- It also produces biogas that replaces fossil fuels (including natural gas) for heat and electricity.

Full-Scale Technology Transfer of Anaerobic Fixed Film Reactor (AFF) and Anaerobic Hybrid Reactor (AHR) to Industries

(An	itesti liut		B Util
		Rice Flour Mill (1 factory)	Electr
		Tapioca Starch (6 factories)	Fuel o replac and E
		Dehydration fruit (2 factories)	Fuel o replac
		Tuna canning (1 factory)	Bioma replac

	Biogas Utilization	Saving	Other benefit
Rice Flour Mill (1 factory)	Electricity	60,000 \$US annually	No impact on community
Tapioca Starch (6 factories)	Fuel oil replacement and Electricity	1.2- 1.8 million \$US annually	No impact on community
Dehydration fruit (2 factories)	Fuel oil replacement	200,000 \$US annually	No impact on community
Tuna canning (1 factory)	Biomass (wood) replacement	170,000 \$US annually	Reclaim WWTP space for other purpose

Cooperation between Thai and Japan on Advanced Biofuels Project: Innovation on Production and Automotive Utilization of Biofuels from Non-Food Biomass

- Japan National Institute of Advanced Industrial Science and Technology (AIST) Waseda University
- Thailand National Metal and Materials Technology Center (MTEC),
- National Science and Technology Development Agency (NSTDA)
- Thailand Institute of Scientific and Technological Research (TISTR)
- King Mongkut's University of Technology, North Bangkok (KMUTNB)

Road Test of High Quality Jatropha Biodiesel

- High quality jatropha biodiesel is obtained from partial hydrogenation technique. 10% of this high quality biodiesel is mixed with regular diesel; this is known as B10.
- Key collaborators on production process are MTEC/NSTDA & TISTR, KMUTNB of Thailand and AIST & Waseda University of Japan.
- Road test of B10 is performed by MTEC in partnership with Tripetch Isuzu and PTT.

Challenges: Biomass for BIOECONOMY

Roadmap of NSTDA Cluster-Based Research

Thank You

National Science and Technology Development Agency (NSTDA)

111Thailand Science ParkPhahonyothin RoadKlong Nueng, Klong LuangPathum Thani 12120Thailand

