Renewable Energy Based Mini-grids in Myanmar: - Barriers and their role for sustainable development and peace -

Masako Numata, Masahiro Sugiyama This research is supported by

List of Contents

- Barrier analysis
 - □<u>Introduction</u>
 - Background
 - Previous study LCOE calculation
 - □Methodology
 - AHP: Analytic Hierarchy Process
 - □Comments and questionnaire
- Renewable energy for sustainable development & peace
 - □Introduction
 - □Comments and Discussion

NASA(2016) 2016 "Earth at Night" map

Background: Energy Access

https://eoimages.gsfc.nasa.gov/images/imagerecords/90000/90008/ear h_vir_2016_lrg.jpg

Current situation: Global population without electricity 2016: 1.1 billion (2000: 1.7 billion) IEA(2017)WEO

SDGs Goal 7: Ensure access to affordable, reliable, sustainable, and modern energy for all Target 7.1: By 2030, ensure universal access to affordable, reliable, and modern energy services

Current situation of electrification in Myanmar

Government's target: 100% electrification rate by 2030

Estimated source of additional generation required to achieve universal electricity access (IRENA, 2017)

Source of electricity in Myanmar

	10.0%	1.9		
No Electricity	100% 90%	3.1 4.2 1.4 4.9	21.7	16.2
	80%	4.9		6
	access 20%		7.3	
Other*	007 300			17.2
Rechargeable	%09 city		22.1	
battery	Percent electricity 20% 30%			17.4
SHS	10% 40%		23.5	10.6
- 202	30%	84.5		
Mini Grid	20%		12.8	32.5
	10%			
Main Grid	O %		12.6	
		Urban	Rural	Total

* Mill, Generator, Solar Lantern

Ministry of Plannning and Finance, Myanmar and World Bank (2017)

Mini-grids in Myanmar

	No. of villages	
Diesel generator	13,000	
Mini hydropower	2,400	
Biomass gasifier	1,200	Greacen (2017). Myanmar Mini-Grid
Solar PV	150	Overview (p. 24). Nay Pyi Taw.

Previous study: Cost competitiveness of PV

Calculated LCOE (Levelized Cost of Electricity) based on interview and questionnaire survey data

Survey 1	
Date	February 2–3, 2017
Venue	Yangon Technological University
Method	Semi-structured interview
	Interview protocol (Comello et al., 2017)
Number of interviewees (companies)	7
Survey 2	
Date	April to July 2017
Method	Questionnaire
Number of interviewees (companies)	2
Survey 3	
Date	October 19–24, 2017
Method	Open interview
Number of interviewees (companies)	4

Comparison of LCOE

Numata et al., (2018) ERIA Discussion paper series. Forthcoming.

Research Question

In rural areas, where the fuel cost is high, what is the barriers to deployment of solar- and battery-powered mini-grids?

List of Contents

Barrier analysis

□Introduction

- Background
- Previous study LCOE calculation

□<u>Methodology</u>

- Barrier typology
- AHP: Analytic Hierarchy Process

□Comments and questionnaire

- Renewable energy for sustainable development & peace
 Introduction
 - □Comments and Discussion

Barrier typology

Comello et al., (2017).

"Enabling Mini-Grid Development in Rural India,",. Greacen (2017). "Role of Mini-grids for Electrification in Myanmar - SWOT Analysis and Roadmap for Scale up."

Barrier typology

Financial Barriers

Access to Difficulty in access to finance due to the immaturity of Myanmar financial sector.

High costEven if funds can be procured, costs ofof capitalcapital (interest rates, loan fees) are high.

Insufficient Customers' access to finance is also limited. customers' capital

Currency When funds are procured in a foreign risk currency, businesses take a currency risk with the revenue in Myanmar Kyat.

Economic Barriers

Small	The scale of Myanmar's renewable energy
market	market is still small.
size	

- Low Creation of demand beyond basic use for lighting and charging cell phones is necessary to make business sustainable.
- Costrevenue ability to pay and the costs.

structure

Fee Collection risk should be collection reduced.

Social/Cultural Barriers

Negative externalities caused by international organizations	The business environment of existing spontaneous mini-grid has changed before/after the mini-grid projects subsidized by international organizations.
Education gap	It is sometimes difficult for local developers/operators to meet credit standards of international soft loan providers not because of creditability but because of education gap

d/myanmar-burma/myanmarnationalelectricitygrid.shtml

Social/Cultural Barriers (cont.)

Ethnic/ Unelectrified regions overlap with areas language inhabited by **Electoral Constituencies** difference NATIONAL GRID SYSTEM ethnic And Ethnic Groups In Myanmar minorities. Perception It is difficult MYAN of inferior to achieve laypyidaw quality 24hours Tibeto-Burman Kayah Rakhine Burman 7days Hani range Lahu Naga supply. Tai Khun Customers' Mon-Khmer Mon New York Wa perception 2 kV Transmission Lin Times (2012) ovV Palaung kV Transmission Line Other S is needed. Chinese (Han) https://www.geni.org/globalenergy/library/national energy gri

Selung (Austronesian)

Yao (Hmong-Mien)

Technical Barriers

TechnologyLocal indigenous technology sometimesgapdiffers from international current practice(e.g., design policy.)

Lack of interconnectivity with main grid

The risk of an unplanned extension of the main grid will increase without interconnectivity with the main grid.

Technical Barriers (cont.)

Inter- mittency	Renewable energy is often intermittent; day/night and dry/rainy seasons for solar power, and rainy/dry seasons for hydropower. A system to compensate is needed.
0&M	Without local expertise, Operation and maintenance (O&M) become more difficult and it affects durability and keeping the quality.

Regulatory Barriers

Lack of There is currently no regulatory legislation covering framework mini-grids.

Lack of technical standards Since there are no technical standards or codes, it is difficult to ensure the quality of mini-grids.

Regulatory Barriers (cont.)

Institution al capacity	Coordination across ministries is time- consuming. On-grid systems fall under the jurisdiction of the Ministry of Electricity and Energy, while off-grid systems fall under the Department of Rural Development, the Ministry of Agriculture, Livestock and Irrigation.
Threat of grid extension	When there is unplanned grid extension, there haven't been settled any compensation or guarantee of business for existing mini- grids

Barrier analysis using AHP

Sub Research Question

Which is the main barrier to deployment of renewable based mini-grid?

Methodology

□AHP: Analytic Hierarchy Process

- A decision making method
- Pair-wise comparison
- Prioritization

□Questionnaire survey to stakeholders

Sample questionnaire

Regulatory Barriers	Extremely imm	Very strongh	Strongly important	Moderately in	Equally important	Moderatelv in	Strongly important	Very strongh	Extremely important	uportant.
	9	7	5	3	1	3	5	7	9	
Lack of regulatory framework										Lack of technical standards
Lack of regulatory framework										Institutional capacity
Lack of regulatory framework										Threat of grid extension
Lack of technical standards										Institutional capacity
Lack of technical standards										Threat of grid extension
Institutional capacity										Threat of grid extension

စည္းမ်ဥ္း စည္းကမ္း ဆုိင္ရာ အခက္အခဲမ်ား	အလြန္႔အလြန္ အေရးႀကီး	အလြန္အမင္း အေရးႀကီး	အလြန္ အေရးႀကီး	အေတာ္အဆာင့္	တန္းတူ အေရးႀကီး	အေတာ္အသင့္	အလြန္ အေရးႀကီး	အလြန္အမင္း အေရးႀကီး	အလြန္႔ အလြန္ အေရးႀကီး	
	e	2	ງ	9	э	9	ງ	2	e	
စည္းမ်ဥ္းစည္းကမ္ း ဆုိင္ရာ ေဘာင္မူ၀ါဒ မရွိျခင္း										နည္းပညာ စံခ်န္စီႏႈန္းမ်ား မရွိျခင္း
စည္းမ်ဥ္းစည္းကမ္ း ဆုိင္ရာ ေဘာင္မူဝါဒ မရွိျခင္း										အဖြဲ႕ အစည္း၏ ေဆာင္ရြက္ ႏုိင္စြမ္း
စည္းမ်ဥ္းစည္းကမ္ း ဆုိင္ရာ ေဘာင္မူ၀ါဒ မရွိျခင္း										ဓာတ္အားလိုင္း တုိးခ်ဲ႕ ရန္ အလားအလာ
နည္းပညာ စံခ်ိန္ စံႏႈန္းမ်ား မရွိျခင္း										အဖြဲ႕ အစည္း၏ ေဆာင္ရြက္ ႏုိင္စြမ္း
နည္းပညာ စံခ်ိန္ စံႏႈန္းမ်ား မရွိျခင္း										ဓာတ္အားလိုင္း တုိးခ်ဲ႕ ရန္ အလားအလာ
အဖြဲ႕ အစည္း၏ ေဆာင္ရြက္ ႏုိင္စြမ္း										ဓာတ္အားလိုင္း တုိးခ်ဲ႕ ရန္ အလားအလာ

List of Contents

- Barrier analysis
 - □Introduction
 - Background
 - Previous study LCOE calculation
 - □Methodology
 - AHP: Analytic Hierarchy Process
 - □Comments and questionnaire
- Renewable energy for sustainable development & peace
 - □Introduction
 - □Comments and Discussion

Comments and questionnaire

- Request for filling out the questionnaire
 - □15 minutes
 - Difficulty: collection of answer...
- Any comments or questions are welcome!
- Further study
 - ■Based on prioritization, derive policy recommendations to overcome main barriers

List of Contents

- Barrier analysis
 - □Introduction
 - Background
 - Previous study LCOE calculation
 - □Methodology
 - AHP: Analytic Hierarchy Process
 - □Comments and questionnaire
- Renewable energy for sustainable development & peace
 - □Introduction
 - □Comments and Discussion

Renewable energy for sustainable development and peace

Overview of the book

Editors	Dr. Daniel M. Kammen (Professor, University of California, Berkeley)					
	Mr. Hisashi Yoshikawa (Project Professor, the University of Tokyo)					
Publisher	Elsevier					
Date of publication	early 2020 (planned)					
Theme	How clean/renewable energy can contribute to sustainable development and peace in Myanmar , Colombia, South Sudan and Balkan?					

Clean/renewable energy can contribute to Institute sustainable development

Affordable and clean energy supports all of the Sustainable Development Goals

Sustainable development in Myanmar

The Myanmar Sustainable Development Plan Summary Framework

Goal 5: Natural Resources & the Environment for Posterity of the Nation

Strategy 5.1	Ensure a clean environment together with healthy and functioning ecosystems					
Strategy 5.2	Increase climate change resilience, reduce exposure to					
Ene	rgy is mentioned only	hile protecting livelihoods, and facilitate growth pathway				
Strategy 5.3 in Strategy 5.4.		ole access to water and sanitation in onmental sustainability				
Strategy 5.4		and reliable energy to populations and propriate energy generation mix				
Strategy 5.5	Improve land governance and sustainable management of resource-based industries ensuring our natural resources dividend benefits all our people					
Strategy 5.6	Manage cities, towns, historical and cultural centers efficiently and sustainably					

Energy can play more role

The Myanmar Sustainable Development Plan Summary Framework

Ministry of Planning and Finance, Myanmar (2018). Myanmar Sustainable Development Plan (2018 - 2030).

Decentralization is a key

Goal 1: Peace, National Reconciliation, Security & Good Governance

Strategy 1.2: Promote equitable and conflict-sensitive socioeconomic development throughout all States and Regions

Action Plan 1.2.1: **Decentralize management of development activities**, **particularly in post-conflict and conflict-affected areas**, as a means of fostering greater social cohesion, including the development of IDP resettlement plans that facilitate safe, voluntary, and dignified returns

Decentralized mini-grids can be a good case

Features of development initiatives that can contribute to peace

Positive contribution to peace

- Provides a local return
- Strengthens subnational authorities
- Builds common ground
- Devolves decision making
- Enables improved livelihoods
- Recognizes multiple systems

Entrenching conflict

- Does not offer local returns
- Fails to consult, generates local tensions
- Contravenes peace agreements
- Exacerbates underlying causes
- Supports security aims of conflict parties
- Does not adapt national programs

Asia Foundation (2017). The Contested Areas of Myanmar: Subnational Conflict, Aid, and Development.

Mini-grids have features that can potentially contribute to peace unlike previous large scale hydropower projects

Positive contribution to peace

- Provides a local return
- Strengthens subnational authorities
- Builds common ground
- Devolves decision making
- Enables improved livelihoods
- Recognizes multiple systems

Mini-grid

- Electricity as a return
- ✓ Up to 30MW off-grid is under state/region authority
- Common understanding is necessary for installment
- Decision making by village committee
- Improve livelihoods
- Adjust systems to each villages

List of Contents

- Barrier analysis
 - □Introduction
 - Background
 - Previous study LCOE calculation
 - □Methodology
 - AHP: Analytic Hierarchy Process
 - □Comments and questionnaire
- Renewable energy for sustainable development & peace
 - □Introduction
 - □Comments and Discussion

Comments and discussion

How can decentralized renewable energy contribute to peace process, or reduction of inequality?