2nd JASTIP-WP2 Annual Workshop 3 February 2017

Development of Activated Carbons from Biomass for Energy Storage Applications

Yuto Miyahara, Kohei Miyazaki, Tomokazu Fukutsuka, Takeshi Abe, Sumittra Charojrochkul*, Yatika Somrang*, Worawarit Kobsiriphat*, Thanathon Sesuk* Kyoto Univ. and MTEC*

Use of biomass for energy storage applications

electrode

Energy storage application (1) Electric double-layer capacitor (EDLC)

Kyoto University

Schematic illustration of EDLC discharge Charger charge Positive Negative

Electrolyte

electrode

Advantages of EDLC

- Long life (Theoretically > 100,000)
- Fast charge and discharge
- High safety

Reaction of EDLC; Adsorption and desorption of ion at the surface of electrode

Key factors for electrode

- Large surface area
- Electrochemical stability etc.

Activated carbon: Suitable electrode material for EDLC

Prepared by MTEC

- \succ Performance of the biomass carbons for metal-air rechargeable battery by KL
 - Oxygen reduction reaction activity evaluation

- EDLC performance of the biomass carbons
 - Cyclic voltammetry
 - Charge and discharge measurement

empty fruit bunch

by KL

5

by MTEC

Outline

Kyoto University

by KL

Synthesis and characterization of carbon samples from oil palm empty fruit bunch
by MTEC

EDLC performance of the biomass carbons

- Cyclic voltammetry
- Charge and discharge measurement
- Performance of the biomass carbons for metal-air rechargeable battery

 by KU
 - Oxygen reduction reaction activity evaluation

Synthetic route of carbon powders

- Scanning electron microscopy (SEM)
- > N₂ adsorption (for BET surface area)

by KU

SEM images and surface areas

Kyoto University

Particle size: unchanged BET surface area: drastic increase

Pore development after CO₂ activation

10

- Synthesis and characterization of carbon samples from oil palm empty fruit bunch
 by MTEC
- > EDLC performance of the biomass carbons
 - Cyclic voltammetry
 - Charge and discharge measurement
- Performance of the biomass carbons for metal-air rechargeable battery

 by KU
 - Oxygen reduction reaction activity evaluation

Outline

Cyclic voltammograms

Comparison of cyclic voltammograms

→better performance

Capacitance by charge and discharge measurement

Kyoto University

CO₂-activated carbon gave larger capacitance

 \succ Performance of the biomass carbons for metal-air rechargeable battery by KU

- EDLC performance of the biomass carbons
- by MTEC

by KL

Kyoto University

Synthesis and characterization of carbon samples from oil palm

empty fruit bunch

Cyclic voltammetry

Charge and discharge measurement

Energy storage application (2) Metal-air rechargeable battery (MARB)

Kyoto University

Electrode reactions

Oxygen electrode : $nO_2 + 2nH_2O + 4ne^- \ge 4nOH^-$ Metal electrode : $4M \ge 4M^{n+} + 4ne^{-}$

Properties

- High energy density
 - $(Zn:1350 \text{ Wh } \text{kg}^{-1} >> 400 \text{ Wh } \text{kg}^{-1} \text{ Li-ion battery})$
- High safety
- Availability of cost-effective materials

Cost-effective oxygen electrocatalyst

Perovskite oxide (ABO₃) Carbon Binder (polymer)

Catalytic role of carbon in oxygen reduction reaction (ORR)

Kyoto University

Functions of each component during ORR

```
Perovskite oxide: catalyst (HO_2^- \rightarrow OH^-)
Carbon: electrically conductive additive + <u>catalyst (O_2 \rightarrow HO_2^-)</u>
Binder: preservation of catalyst-layer structure
```

Candidate of active site for carbon: quinone-like structure

Measurement of ORR performance of CO₂-activated carbon

Electrochemical measurement of MARB performance

- W.E.: Carbons (Vulcan or CO_2 activation) + binder Perovskite powder + carbons + binder
- C.E.: Platinum wire
- R.E.: Reversible hydrogen electrode (RHE)
- Electrolyte: O₂-saturated 1.0 mol dm⁻³ KOH solution

ORR performance

Kyoto University

CO₂-activated carbon: lower activity than Vulcan

Possible properties correlating with ORR performance

Kyoto University

Photo of catalyst ink -

- CO₂-activated carbon
- Large particle size
- Low dispersibility

Reason for the low activity of CO_2 -activated carbon

- Biomass carbon from oil palm empty fruit bunches were applied to EDLC electrodes and an air electrode in MARB.
- Pore development and increase in defects were observed after CO₂ activation.
- The performance of EDLC was drastically enhanced after the CO₂ activation.
- Reduction of particle size and enhancement of dispersibility are required to apply present carbon to the air electrode in MARB.