

Synthesis and characterization of new photocatalytic nano-materials

Presented by

Wanichaya Mekprasart Nanocomposite Material Research Laboratory (NMRL)

College of Nanotechnology King Mongkut's Institute of Technology Ladkrabang

Contents

Introduction

Research Topics in Kyoto U.

Conclusion & Output

2

3

College of Nanotechnology King Mongkut's Institute of Technology Ladkrabang (KMITL)

Nanocomposite Material Research Laboratory (NMRL)

Dr. Kanokthip Boonyaratkarin

Assoc. Prof. Dr. Wisanu Pecharapa Head of NMRL, KMITL

Assist. Prof. Dr. Wanichaya Mekprasart

NMRL laboratory is focused on study, research and development of the composite based on oxide materials and nano-scaled materials. Moreover, the products of nanostructured materials synthesized by different processes are the main target that can be proposed to various applications, for example, electronic device, photocatalyst, dye-sensitized solar cell, magnetic-related devices.

Purpose of collaborative research

Prof. Dr. Keiichi N. Ishihara Social-Environmental Energy Science, Graduate School of Energy Science

Assoc. Prof. Dr. Wisanu Pecharapa Nanocomposite Material Research Laboratory, KMITL

Short research under JASTIP fund for 2 months at Kyoto University

Synthesis and characterization of new photocatalytic nano-materials

- Synthesis and development of zinc aluminate (ZnAl₂O₄) nanomaterial and its composite utilized as photoluminescence application by rare-earth doping based mechanical milling process
- Synthesis of bismuth oxide optical material via thermal treatment assisted quenching process

Research plan

Working sequences	Duration in 2016							
	October				November			
	W1	W2	W3	W4	W1	W2	W3	W4
1. Join in the international conference on Energy and Environment field in ISESES2016	\leftrightarrow							
2. Synthesis of lanthanide element doped zinc aluminate optical material via mechanical vibrational ball milling process assisted with calcination treatment								
3. Characterization of lanthanide element doped zinc aluminate powder via mechanical vibrational ball milling process assisted with calcination treatment								
					-			
4. Synthesis of bismuth oxide optical material via thermal treatment assisted quenching process					•			
5. Learning the experimental setting of photocatalytic degradation system							\leftrightarrow	
6. Comparing of photocatalyst efficiency in methyl orange dye degradation with different phase of bismuth oxide powder								→

First topic:

Synthesis and development of zinc aluminate (ZnAl₂O₄) nanomaterial and its composite utilized as photoluminescent application by rare-earth doping based mechanical milling process

Research Background in Thailand

 Research in ZnAl₂O₄
Synthesis with mechanical system

Luminescence Material

Applications

- Field emission display (FED)
- Light-emitting diode (LED)
- Electroluminescent device
- Biological label
- Solid state laser

Rare-earth: Samarium (Sm)

Vineet Kumar et.al, J. Physics D: App. (Phys., (2013), 46, 36

Properties

- Discovered in 1879 by the French chemist Paul Émile Lecoq de Boisbaudran
- A typical member of the lanthanide series
- Oxidation state; +3
- Rhombohedral crystal structure

Zinc Aluminate (ZnAl₂O₄)

Properties

- Name in nature: Gahnite
- Spinel structure (AB₂O₄) and space group Fd3m
- Wide-band gap (3.8 eV)
- Chemical and thermal stability
- High mechanical resistance
- Low surface acidity
- Hydrophobicity

Die roten "Würfel" sind auch im

hinterenTeil des Kristalls

 AB_2O_4 Spinell

Zinc Aluminate (ZnAl₂O₄) Applications

High temperature and transparent ceramic material

(X. Yong et.al., Mater. Lett., 123 (2014) pp.142–144.)

Catalyst and catalyst support

(M. Zawadzki et.al., Appl. Cata. A 371 (2009) pp. 92-98)

- Electronic device (B. Cheng et.al., Ceram. Inter. 39 (2013) pp. 7379–7386)
- Host matrix for luminescence material

(D. Zhang et.al., J. Physic. Chem. Solids 74 (2013) pp. 1131-11305)

Fig. 6. Response and recovery characteristic of the humidity sensor measured at 100 Hz.

Vibrational milling

http://pubs.rsc.org/en/content/articlelanding/ 2013/cs/c3cs35468g/unauth#!divAbstract

Oxide and metal precursor

EXPERIMENTAL

ZnO:Al₂O₃ powder at ratio 1:1 (2.5:2.5 g) and Sm metal doping at 0.5, 1 and 2 wt.%

1st Vibrational milling (material: ball weight = 1:10) at 710 rpm for 4 h

3 times

3rd Vibrational milling at 710 rpm for 4 h

Calciantion; 1200 °C for 6h

Results: XRD Characterization

Fig. 1. XRD patterns of Sm: $ZnAl_2O_4$ nanopowders with different Sm doping.

Results: UV-Vis Spectra

Fig. 3. Diffuse reflectance spectra of Sm:ZnAl₂O₄ nanopowders with different Sm doping.

Results: Photoluminescence Spectra

Fig. 4. Photoluminescence spectra of Sm: $ZnAl_2O_4$ nanopowder with different Sm loading.

Second topic:

Synthesis of bismuth oxide optical material via thermal treatment assisted quenching process

Titaniumdioxide (TiO₂)

TiO₂ crystalline structures

Titaniumdioxide (TiO₂)

Bismuth oxide (Bi₂O₃)

Solid phases of Bi₂O₃

Properties

- p-type metal oxide semi-conductor
- Direct band gap of 2.8 eV
- Visible-light-driven photocatalyst
- Good electrical conductivity and thermal properties
- Applied as: gas sensor, phtovoltaic cell, optical coating, fuel cell, etc.

Five polymorphs of bismuth oxide (Bi_2O_3) named: α - Bi_2O_3 (monoclinic), β - Bi_2O_3 (tetragonal), γ - Bi_2O_3 (BCC), δ - Bi_2O_3 (Cubic), ϵ - Bi_2O_3 (triclinic).

Bismuth oxide (Bi₂O₃)

Photocatalyst

 β- Bi₂O₃ show the highest visiblelight-driven photocatalyst

Thermal treatment and quenching process

α-, β-Bi₂O₃の固体電子構造解析及び可視光吸収特性評価

古門 裕輝*, 中村 裕之, 松嶋 茂憲, 小畑 賢次

Electronic Structure Analysis and Visible Absorption Characterization of α -, β -Bi₂O₃

Yuki FURUKADO*, Hiroyuki NAKAMURA, Shigenori MATSUSHIMA, and Kenji OBATA

Experimental

Fig. 5 Photographs of Bi_2O_3 powders by via thermal treatment at different temperature (a) $(BiO)_2CO_3$ precursor, (b) 5 °C and (c) 20 °C.

Results: XRD Characterization

23

Fig. 6 XRD patterns of (a) $(BiO)_2CO_3$ precursor and the products of (b) alpha-Bi₂O₃ and (c) beta-Bi₂O₃ powder at different quenching temperatures.

Results: UV-Vis Spectra

 $\mathbf{24}$

Fig. 7 Diffuse reflectance spectra of (a) $(BiO)_2CO_3$ precursor and the products of (b) alpha-Bi₂O₃ and (c) beta-Bi₂O₃ powder at different quenching temperatures.

Results: Photcatalytic activity

Fig. 8 Absorption spectra of Methyl orange (MO) under Xenon lamp irradiation using β and α - Bi₂O₃ photocatalyst.

Results: Photcatalytic activity

Fig. 9 Reaction rate of α and β Bi₂O₃ photocatalyst in MO degradation.

Conclusion

- The improvement of ZnAl₂O₄ new product has been synthesized by solid-state reaction assited with calcination process (several milling and thermal process).
- The strongest emission was performed at 0.5 wt.% Sm in ZnAl₂O₄ owning to the energy transfer from Sm to ZnAl₂O₄ matrix.
- Bi₂O₃ powders in β and α phase were successfully prepared from (BiO)₂CO₃ precursor by facile process of heat treatment assisted with quenching process.
- 4 Owing to high absorption in visible region, βphase Bi₂O₃ can efficiently active in the catalytic performance in the photodegradation of aqueous MO.

