

Innovations for conversion of sugar to high value chemicals by photocatalytic process

Aims & Objectives

This project aims to develop high performance photocatalysts and photocatalytic reactor for production of target chemicals from glucose which can be obtained from 1st generation or 2nd generation raw materials in biorefinery. The project will focus on synthesis and fabrication of nano-scaled photocatalysts with improved performance and characterization of physicochemical properties of self-synthesized photocatalysts compared to commercial catalysts. The work will include the study of photocatalytic reactions on synthesis of high-value products (functional sugar derivatives) from glucose and application of the developed photocatalysts for production of target chemicals in photocatalytic reactor. The specific technical objectives are as follows:

- (a) To study the effects of fabrication conditions, doping and surface modification on morphotological appearances, physico-chemical properties, photocatalytic activity and selectivity of the photocatalysts
- (b) To study the effects of chemical structures of sugars on mechanisms of photocatalytic reactions
- (c) To study the reaction pathways for photocatalytic conversion of sugars (e.g. glucose) to its derivatives or unconventional sugars
- (d) To design and assemble a prototype laboratory-scale photocatalyic reactor (photo bio-flow reactor)
- (e) To study the reaction kinetics on sugar conversion to target chemicals in photobio flow reactor

Project strategic plan

Scopes of the research work

Glucose conversion to value-added chemicals

UV light

Value-added Chemicals

- Xylitol
- Gluconic acid
- Formic acid
- Arabinose

Research progress (Sep 2018 – Jan 2019)

Synthesis of TiO₂ nanofibers

Synthesis of B,N-TiO₂ nanofibers

Prepare solution

Synthesis of TiO₂ hollow nanoribbons

Prepare solution

Synthesis of B,N-TiO₂ hollow nanoribbons

Prepare solution

Characterizations

Scanning electron microscope (SEM) image

1.22um±0.30 1.50um±0.55 0.21um±0.10 0.14um±0.03 2.16um±0.21 1.70um±0.22

Characterizations

X-ray diffraction (XRD) pattern

Crystallite size

Materials	Crystallite size (nm)
TiO ₂ nanoparticles	8.90
B,N-TiO ₂ nanoparticles	6.74
TiO ₂ nanofibers	12.79
B,N-TiO ₂ nanofibers	10.66
TiO ₂ nanoribbons	10.34
B,N-TiO ₂ nanoribbons	9.77

Characterizations

Photoluminescence spectra

Nanoparticles

Nanofibers

Nanoribbons

Photocatalytic Glucose Conversion on Pristine TiO₂ and Metaldoped Nanofibers

SEM images of Pristine TiO₂ and Metal-doped Nanofibers

Photocatalytic conversion of glucose under UV irradiation for 120 min with Ag-loaded on TiO_2 nanofibers catalyst prepared by different techniques.

Future plan

- Optimization of percentage doping of nitrogen and boron in TiO₂ nanofibers and nanoribbons
- Characterizations of physio-chemical properties of photocatalytic materials.
- □ Synthesis of glucose-imprinted TiO₂ photocatalyst and characterization
- Study of the efficiency of photocatalyst on glucose conversion of other forms of fibers and further applications in photocatalytic bio-flow reactor

Overview of reactor design

1. Photocatalytic slurry

Parabolic trough reactor

Compound parabolic concentrator

Alfano, et al., Catalysis Today 58 (2000) 199-230.

2. Photocatalyst immobilized on support

Alfano, et al., Catalysis Today 58 (2000) 199–230. Claes, et al., Chemical Engineering Journal 361 (2019) 725-735.

2. Photocatalyst immobilized on support

Multi channel photocatalytic reactor

A.A. Dimitrios et al., Chemical Engineering Journal 305 (2016) 92–103. Foster et al., US Patent, US 2010/0003169 A1 (2010).

- 2. Photocatalyst immobilized on support
- Flat plate reactor

2. Photocatalyst immobilized on support

Multiplate thin film reactor

Adams, et al., Hindawi Publishing Corporation International Journal of Photoenergy 674537 (2008) 1-7.

Summary

Innovations for Conversion of Sugars to High Value Chemicals by Photocatalytic Process

X/XX

BIOTEC-JGSEE/KMUTT-Kyoto

Scientific Outputs BN- iO2 iO2 nanoribbons nanoribbons

1 22um±0 30 1 50um±0 55 0 21um±0 10 0 14um±0 03 2 16um±0 21 1 70um±0 22

Sugar Conversions

100

120

ATIVERACT: Upgrading of homass wattes to be value added materials has been attempted to apply in various applications. One of the interesting challenges is the effort to atilize biomass wastes to modify metal oxides to form reposited photocatalysts to enhance the photoabsorption the resultant catalysts. In this work, lignin-based carbo was used to modify TiO₂ and form the composite photo-catalyst (TiO₂/lignin). A sol-gel microwave technique was ased to prepare these catalysts. The effects of lignin-based authon modification were investigated on their morphology,

Latton flocalisation were investigant on time anoportegy, investigation of the solution of the obtained calysts, including field ensions canning electron micro-copy, kip/neokaton transmission electron micro-copy, kip/neokaton transmission electron micro-copy. Kip/neokaton, Kission international performance of the Million enfectment systems systems and the Bransaer-Elment-Teller method, and Million enfectment UV-ws spectroscopy, were carried out. Here, lightn not only was used as a natural carbon source for modification of TiO, but also can be used as the biomass resource for green chemical production. Enhancement of photocatalytic performance of TiO, ano can ne usola so the nonnos resource on green comman production, consummars of protostatype primerance on type by carbon from sturtured ligati was investigated from conversion of ligation to high value chernicals. It was fund that carbon from ligatio approved UVA traditions photocatibytic performance of the 'TiO₂/ligatio composite computed with the pristane 'TiO₂. The 'TiO₂/ligation composite with a 'TiO₂ to ligation action of JiOS presented good cherasteristics and showed the highest photocatable textivity under UVA tradition for S h. After identification by gas chromosterability mass spectruscopy, high value chemicals, such as vanillin, were found after photocatalysis.

REYWORDS: Lignin, TiO2 Composite photocatalyst, Lignin conversion, High value chemical

-Int. Journal : 2 papers + 2 submitted -Int. Conf.: 2 invited + 3 orals

TiO₂/Lignin-Based Carbon Composited Photocatalysts for Enhanced Photocatalytic Conversion of Lignin to High Value Chemicals

Nattida Srisasiwimon,^{†,‡} Surawut Chuangchote,^{#3} Navadol Laosiripojana,^{†,‡} and Takashi Sagawa¹

¹The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thooburi, 126 Prachasthit Rd., Bangmod, Thungkra, Bangkok 10140, Thaland

Center for Energy Technology and Environment, Ministry of Education, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand

¹Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Prachauthat Rd., Bangmod, Thungkru, Banglook 10140, Thailand

Graduate School of Energy Science, Kyoto University, Yoshida honmachi, Sakyo-ku, Kyoto 606-8501, Japa

Thank you

Acknowledgement
JASTIP program
National Science and Technology Development Agency