Kyoto University # Institute of Advanced Energy 2024 ## Greetings "The times have finally caught up with us." I am aware that this may be an irreverent attitude, but I would like to say that we at the Institute of Advanced Energy, Kyoto University, think this way. Going back 13 years, in 2011, our Institute started a Joint Usage/Research Center project certified by the Minister of Education, Culture, Sports, Science and Technology of Japan (MEXT). The Center's name is the "Zero-Emission Energy Research Center," and its mission is to investigate energy that minimizes the emission of harmful substances such as carbon dioxide. It's hard to imagine now, but when we started this Center project, there were quite a few skeptical opinions about the significance and importance of this mission. This Center project received high end-of-term evaluations in both the first term from 2011 to 2015 and the second term from 2016 to 2021. We believe that the significance and importance of this mission have been widely recognized in society, and that the contribution of our Institute in this mission has been highly rated. In response to them, we are currently implementing the third phase of the Center project from 2022 to 2027. The times have caught up with us, but in order to stay ahead of the times, we have established the Integrated Research Center for Carbon Negative Science (ICaNS) in 2022, which investigates "Carbon-Negative Energy" that is a further advance of "Zero-Emission Energy". The Institute of Advanced Energy was established in 1996 with the aim of investigating the state of energy by going back to the laws and principles of nature, and creating new energy theories for the next generation and cutting-edge technologies. The Institute has 14 research fields in three divisions, each named energy generation, conversion, and utilization. In addition, the Institute has "Laboratory for Complex Energy Processes", which have equipment for common use in the above-mentioned Joint Usage/Research Center project and support the Center project, and the aforementioned ICaNS. The Institute has established two priority multidisciplinary research areas as its core. One is "plasma/quantum" energy," which aims to realize nuclear fusion, and the other is "soft energy," which aims for highly efficient energy use and conversion based on biological energy usage principles and material science. Each research field of this Institute functions as a collaborative course with the Graduate School of Energy Science, Kyoto University, and a considerable number of master's and doctoral course graduate students are assigned, allowing them to work in a cutting-edge research environment. We also contribute to undergraduate education by providing lecture classes throughout Kyoto University. Furthermore, since 2019, we have been carrying out the MEXT's project, "Formation of an International Collaborative Laboratory at the International Center for Advanced Energy Science Research and Education", together with the Graduate School of Energy Science, expanding the scope of our educational and research Under the Kyoto University's academic culture of freedom, Vice Director Kazunari Matsuda and all of our faculty and staff will strive to contribute to research activities as well as education and international corporation, as a research Institute that is ahead of the times. We appreciate your continued support. Director Masato Katahira activities internationally. ## CONTENTS | Greetings ······1 | |--| | Mission and Goal3 | | Organization Chart ······ 4 | | History5 | | Overview of Divisions and Faculty Members7 | | ► Advanced Energy Generation Division | | ▶ Advanced Energy Conversion Division | | ► Advanced Energy Utilization Division | | ▶ Laboratory for Complex Energy Processes | | Adjunct Faculty Members23 | | Overview of Laboratory for Complex Energy Processes ····· 24 | | Organization of Research Projects in the Laboratory | | 26 | | Integrated Research Center for Carbon Negative Science | | Overview of Integrated Research Center for Carbon | | Negative Science ······ 28 | | Major Projects ······29 | | Research Facilities ············35 | | Education and Social Activities39 | | International Activities ·······41 | | Data43 | | Admissions44 | | Access to Kyoto University · · · · · 45 | #### Mission and Goal The Institute of Advanced Energy (IAE) was established to promote researches to sophisticate the generation, conversion, and utilization of energy. Our goals are - (a) to conduct pioneering research on advanced energy science and technology, - (b) to propose solutions to energy and environmental issues associated with rapid global population expansion, and - (c) to contribute to the sustainable progress of humankind. We perform a comprehensive approach towards development of next-generation energy systems, which have the potential to replace existing energy systems, with two viewpoints, Quality (harmonization with the environment) and Quantity (social infrastructure). In order to secure sustainable energy resources or systems, our research activities emphasize improving the performance of energy systems, developing new energy resources, and realizing systems for effective use of energy resources, which can be termed as the Zero-Emission Energy System. Moreover, through these endeavors, we aim to foster scientists and engineers who possess advanced knowledge and skills in the energy science and technology. To meet our objectives, we strive to further explore the research field of Advanced Energy or Zero-Emission Energy by innovating an energy system with high social receptivity and a system capable of incorporating various sources of energy. The human and research resources at IAE are consisted of diverse academic backgrounds. This characteristic provides a unique opportunity to promote interdisciplinary researches coordinated by seemingly different research fields. By taking advantage of these activities, IAE serves as a hub for advanced energy research in Japan and around the world. These activities will further develop the advanced energy research to contribute to the next generation and contribute to the sustainable growth of society. ## **Organization Chart** ## **History** Engineering Research Institute 10th Anniversary of Kyoto University Engineering Research Institute Institute of Atomic Energy Institute of Advanced Energy Inaugurated Integrated Research Center for Carbon Negative Science Inaugurated Plasma Physics Laboratory • Renamed to Institute of Atomic Energy with 8 Research divisions 1971 1970 1970 1970 1969 Laboratory for Nuclear Reactor Safety Analysis Moved from the Main Campus to Uji Campus 1968 Plasma Physics Laboratory (Faculty of Engineering) 1966 1965 Heliotron C 1960 Heliotron B 1959 Heliotron A Engineering Research Institute with 5 divisions Research Center ◀ in Faculty of Engineering → Heliotron DM → Magneto Plasma Research Laboratory KU-FEL NMR ## **Division Introduction** #### Advanced Energy Generation Division We promote the development of socio-friendly and fundamental "zero-emission energy system" that should be an inevitable issue sustainable future of humankind, and innovative energy sources with particular function including their application technology. #### **Advanced Energy Conversion Division** Aiming at the efficient conversion of energy functions and the generation of new energy functions, this division studies fundamental energy-material interaction and its applications, efficient energy-conversion processes, and the development of functional energy materials. #### Advanced Energy Utilization Division The aim of division is the establishment of 'Emergent Materials Science' having a similar concept seen in energyrelated processes in nature, efficiently converting 'soft energy' into 'electricity' and 'valuable chemicals' without huge consumption. The research projects ongoing cover the researches of energy-related materials sciences, chemistry and biosciences for the development of new technologies for renewable energy conversion and utilization. #### **Laboratory for Complex Energy Processes** This Laboratory is a core research center for strategic and multidisciplinary collaboration studies in IAE, offering cooperative project activities in the field of the advanced energy. The Center has three divisions: (1) "Division of Plasma and Quantum Energy Research", for fusion and related advanced energy studies, (2) "Division of Soft Energy Science Research", that promotes innovative functional materials based on nanotechnology and biotechnology, and (3) "Division of International and Industrial Partnership" that promotes and enhances activities and relationship with foreign and domestic research partners including industry and private sector. Corresponding to the two research areas, "Self-Assembly Science", "High-Temperature Plasma Equipment Engineering", "Broad Band Energy Science", the Donation Program "Environmental Microbiology", and "Biomass Product Tree Industry-Academia Collaborative Research Laboratory" research sections belong to the Laboratory. #### Integrated Research Center for Carbon Negative Science (ICaNS) To achieve carbon neutrality in 2050, it is necessary to create a new energy system which includes an active carbon dioxide fixation process in addition to "zero emission" technology. We promote the research for new carbon dioxide fixation technologies in collaboration with the Graduate School of Engineering and the Graduate School of Energy Science. We also work on education to disseminate "Carbon-Negative Energy Science". | Quantum Radiation Energy Research Section 9 | |---| | Advanced Atomic Energy Research Section | | Complex Plasma Systems Research Section12 | | | | Functional Materials Science and Engineering Research Section · · · · 13 | | Advanced Laser
Science Research Section 14 | | Advanced Energy Structural Materials Research Section 15 | | Nano Optical Science Research Section 16 | | | | Chemical Reaction Complex Processes Research Section · · 17 | | Molecular Nanotechnology Research Section18 | | Biofunctional Chemistry Research Section 19 | | Structural Energy Bioscience Research Section 20 | | | | Self-Assembly Science Research Section 21 | | Environmental Microbiology Research Section (Donation Program)22 | | Biomass Product Tree Industry-Academia Collaborative Research Laboratory 23 | Integrated Research Center for Carbon Negative Science ---- 27 #### Interactions among Divisions The Institute of Advanced Energy has three divisions including "Advanced Energy Generation Division", "Advanced Energy Conversion Division", and "Advanced Energy Utilization Division". Each division consists of researchers pursuing a variety of scientific research programs as described in the next section. These ongoing research programs aim to establish state-of-art technology for the energy systems in the next generation, especially our current target, the "Zero-Emission Energy" system, which is indispensable for the sustainable development of humankind. In addition to these research activities ongoing in the Divisions, the interdisciplinary collaborative research programs surely accelerate the development of "Zero-Emission Energy" system. Towards this goal, the Laboratory for Complex Energy Processes is established to support interdisciplinary collaborative research projects among the researchers in three divisions since the establishment of the laboratory. Such collaborations through the projects now focus on two research categories of "Plasma & Quantum Energy" and "Soft Energy". This multilayered structure of our research activities has enhanced the comprehensive capabilities of the institute, thereby creating a distinctive characteristic of our institute. Furthermore, the Integrated Research Center for Carbon Negative Science was established in 2022, and the researchers from each research division are working for the realization of a carbon-neutral society. ## **Quantum Radiation Energy Research Section** Research on Generation and Application of New Quantum Radiations, i.e. Compact MIR Free Electron Laser, Table-Top THz coherent radiation, and Laser-Compton Gamma-ray. International collaboration research on renewable implementation in ASEAN. Hideaki Ohgaki Heishun Zen Program-Specific Assistant Professor Jordi Cravioto Caballero # Generation and Application of New Quantum Radiation Generation and application of new quantum radiations from relativistic electron beams have been studied. Free electron laser, which is generated by a high brightness electron beam from an accelerator, is a tunable laser with high power. We have developed a thermionic cathode RF gun with our original RF control system to generate mid-infrared FEL with a compact accelerator system. In 2008 we succeeded in FEL power saturation at 13.6 µm in wavelength and now the FEL can provide the intense laser light in the wavelength region from 3.4 to 26 μ m. As application researchers, we promote the mode-selective phonon excitation experiment to study wide-gap semiconductors in cooperation with in-house users as well as outside users. Generation and application of Laser-Compton Gamma-ray beam have been studied for the nuclear safeguard and security technology. A short period undulator consisting of bulk high Tc superconducting magnet and table- top THz coherent radiation have been studied. We promote international collaboration research on renewable energy implementation in ASEAN as well. Wavelength Tunability of KU-FEL Wavelength Tunability of KU-FEL This graph shows the wavelength tenability of KU-FEL. We can freely change the FEL wavelength from 3.4 to 26 μ m by changing the electron beam energy from 36 to 20 MeV. The spectral width of the FEL is around 1–3 percent in FWHM. Isotope CT by using Laser-Compton Gamma-ray beam Isotope mapping by using Laser-Compton Gamma-ray beam generated in collision of electron beam and laser has been developed to apply nuclear safeguard. #### Principle of FEL Generation of Free Electron Laser (FEL) is based on the microbunching phenomenon driven by a high brightness electron beam which interacts with electro-magnetic field. ## **Advanced Atomic Energy Research Section** We design and develop the zero-emission energy system powered by fusion, from its generation to utilization, and analyze it from environment, socioeconomics, and sustainability aspects. #### Design, Development and Assessment of Fusion Energy Systems Zero-emission energy system that has little constraints of resource and environment is expected to provide ultimate solution for sustainable development of human in the global scale. We study the fusion system design and development, as well as the integrated evaluation from social and environmental aspects. Development of new fusion device to generate neutron beam, conversion of fusion energy, and its application for the production of clean fuels are performed. Fusion is investigated from its generation to the application and adaptation to the future society. We are one of the leading research team of fusion technology, and regarded as a key station of international collaboration. Study of "Sustainability" on energy and environment is also our major topic. #### Fusion blanket research Fusion reactor requires blanket that utilizes neutron to produce fuels. Experimental system for fusion neutron behavior in the simulated assembly with an integrated material system is established as the 1st attempt in the world. Vacuum sieve tray (VST) concept developed by our group is tested to demonstrate the efficient recovery of heat and fuel tritium from liquid lithium lead circulating fusion blankets. Tritium pumping system to reduce tritium inventory in a fusion reactor and impurity reduction method in liquid metal to improve material compatibility are also investigated. Juro Yagi Professor (Concurrent) Kazunobu Nagasaki Concept of Fusion-Biomass Hybrid system Fusion Blanket experiment with fusion neutron source (right), vacuum sieve tray experimental setup (left) ## Advanced Plasma Energy Research Section High-power microwave system and high-power neutral beam injection for plasma heating and current drive, and plasma diagnostics using microwaves and beam emission spectroscopy are being developed by controlling charged particles and electromagnetic field. Kazunobu Nagasaki Shinji Kobayashi #### Development of Advanced Energy by electromagnetic waves and particle beams Advanced and innovative control methods for the collective behavior of charged particles are being developed in this research section to bring about enormous contributions to the human beings. Emphasized are particularly studies of nonlinear interactions between charged particles and electromagnetic fields. Production, heating, current drive and MHD suppression of fusion plasmas by electron cyclotron resonance are studied by using high-power microwave sources such as magnetrons and gyrotrons and neutral beam injection system. Application of microwaves is also targeted for development of heating and current drive systems. Neutral beam injection system based on high power hydrogen ion sources is used for an attractive scheme for sustainment of high-density plasmas and an effective active actuator of momentum and plasma current, which enables us to control the plasma transport to a preferable plasma confinement condition. In order to realize optimization of magnetic configuration in helical devices, we originally designed and constructed an advanced helical device, Heliotron J in Kyoto University. In the Heliotron J device, we have been also developing plasma diagnostics such as radiometers, reflectometers and active beam spectroscopic systems (charge-exchange recombination spectroscopy and beam emission spectroscopy) to understand the heat, momentum and particle transport. Particle and heat transport in magnetically confined plasmas are studied by computational simulation using transport analysis codes based on heat absorption profile calculations. Neutral beam injection system and active beam spectroscopy for Heliotron J Two beam lines of neutral beam injection system has a maximum applied voltage of 30 keV and maximum injection power of 0.7 MW, respectively. Active beam spectroscopy, charge exchange and beam emission spectroscopies, are being developed to obtain spatiotemporal structure of density, temperature and flow velocity and their fluctuations. Performance improvement of magnetically confined plasmas by control and suppression of instabilities Our aim is to have good plasma confinement by means of the control and suppression of several kinds of unfavorable instabilities in high-temperature plasmas, based on experimental and numerical studies. In particular, we are interested in the resonant wave-particle interaction, which leads to risky degradation in a fusion plasma and are commonly observed in nature. High-power microwave source "Gyrotron" A gyrotron produces a Gaussian-shaped microwave beam of 70 GHz 500 kW power, which is used for production, heating and current drive of fusion plasmas. ## **Complex Plasma Systems Research Section** Various collective phenomena appear in complex plasmas where many structures coexist. Fusion plasma is a typical complex plasma in which collective effects induce new structures and thus the plasma is constantly changing. We aim to understand the laws of this plasma wandering in order to generate fusion energy. Complex collective phenomena appear in plasmas in which many elements and structures coexist. Such a plasma is called a complex plasma. A plasma is a collection of charged particles such as electrons and ions. When the plasma has large energy, collective motions of the plasma, such as waves, undulations, flows, and vortices, are created.
Accompanying this plasma motion, heat and charged particles become homogeneous or localized. The resultant inhomogeneity of heat and particles creates new plasma motion, and then the plasma is constantly changing. This "law of plasma wandering" leads to plasma motion on a variety of spatiotemporal scales that cannot be predicted from the motion of individual charged particles. The "Fusion plasma" is a complex plasma, and it exhibits a great variety of dynamics. In order to realize fusion, we need to understand this complex plasma system. For this purpose, we are trying to clarify the "law of Panta Rhei" of plasmas. Observation is the key to understanding the law. To "observe" it is necessary to create and measure a complex plasma system. In this research field, in order to realize plasma fusion high energy plasma is generated in the plasma experimental device "Heliotron J", and is measured using light and electromagnetic waves, and the data is analyzed. We are working with theory and simulation to explore the "law of Panta Rhei" for thermal fusion. # Probing What Is Real in Plasma Using Optical Emission Optical emission from plasmas includes plenty of information such as density, temperature, ionic species and their fluctuations. "Know the enemy (plasma) and know yourself (measurement methods and data), then you can fight the hundred battles without fear"—the real plasma properties that have never been known to anyone will be in our hands. Plasma emits various line spectra as can be seen through a simple grating film. One can draw huge amount of information from the high-grade spectrographs. # Turbulence and transport in fusion plasma Confined plasma is, in reality, far from calm. There are many types of turbulent fluctuations growing from the non-uniform plasma parameters. They enhance the transport and degrade the plasma confinement property. For the characterization of the turbulence, we applied various kind of spatiotemporal spectral analysis methods and trying to figure out the correlation between the turbulence and the plasma confinement. Measurement and signal processing for the turbulent plasma fluctuations. Various spectral analysis techniques are useful for determining the eddy size, frequency and non-linear coupling of the turbulences. In general, prediction of turbulent transport is difficult because the broadband nature of the spatiotemporal scale of plasma turbulence. We are challenging to the resolve the problems of multi-time-scale turbulence (e.g. abrupt phenomena, nonlocal transport) by using electron cyclotron emission with ultra-fast digital storage oscilloscope and advanced spectrum analysis. Bursty transport observed in torus plasmas. Heat is transferred to outside of plasma. This phenomenon is similar to avalanches, which are driven by self-organized criticality of turbulent plasma. Shigeru Inagaki Associate Professor Shinichiro Kado Fumiyoshi Kin ## Functional Materials Science and Engineering Research Section Our research focuses on the physical properties of nanoscale/quantum materials and their applications in energy conversion/utilization technologies. In particular, materials science and engineering for highly efficient use of solar light and thermal energy are the subjects of interest. Yuhei Miyauchi Taishi Nishihara #### Energy science based on the functional properties of nanoscale/quantum materials Our research focuses on the physical properties, functions, and energy applications of materials that exhibit significant quantum mechanical effects, such as carbon nanotubes (CNT) and recently discovered topological materials. The aim is to create new technologies for highly efficient use of solar light/thermal energy that will contribute to the realization of a sustainable energy society. To understand the unique physical properties of these materials from the fundamental principles and extract superior functions that exceed the limits of conventional materials, we are promoting interdisciplinary research that covers basic sciences, including condensed matter physics and materials synthesis, as well as thermal, mechanical, electronic, and optical engineering along with the fabrication of integrated materials. #### 1) Highly-efficient solar energy conversion application of carbon nanotube's quantum thermal optical properties In various engineering fields, properties of available materials determine the physical limits of implementable functions. Thus, the emergence of new material systems with unconventional physical properties may bring innovation to various fields including energy science. To find the seeds of this innovation, it is necessary to accumulate basic research on novel physical properties and link the results to the future development of energy science and technology. As a part of such efforts, we have been developing an innovative solar energy spectrum converter by introducing the latest findings that we have discovered in CNT-generation of narrow-band exciton thermal radiation in high-temperature CNTto the engineering of thermal radiation control. This research aims to convert broadband solar energy into narrowband energy with high efficiency and apply it to future solar energy utilization technologies, such as highly efficient solar thermal power generation, solar steam generation, and solar thermal material synthesis. Quantum thermal-photophysical properties of carbon nanotubes and their applications. Narrow-band thermal exciton emission spectra of semiconducting carbon nanotubes at about 1500 K (left) and schematic of solar energy spectral conversion using the excitonic thermal radiation of a carbon nanotube assembly #### 2) Integrated functional nanomaterials for energy applications When nanomaterials are integrated for use in macroscale engineering, interactions among each component material often cause significant changes in their physical properties. Thus, understanding the physical properties of the individual nanomaterial alone is not sufficient to accurately predict as well as design the physical properties and functions of macroscopic assembly of nanomaterials for their use in engineering. In addition, it is relevant to elucidate the physical properties and functions that emerge in the macroscopic assembly for the design and property control of integrated materials in which nanomaterials are used as building blocks. We are working on the creation of highly functional and highvalue-added nanocarbon-integrated materials, such as single chiral structure nanotube assembly and nanotube composites with excellent optical, thermal, electronic, and mechanical properties. This study aims at their applications to highefficiency solar energy utilization technology, highperformance thermal management materials, and ultrahigh specific strength materials for extremely fuel-efficient transportation machinery. Further, to develop expensive highperformance nanocarbon materials into low-cost materials that can be used ubiquitously on a global scale, we will promote comprehensive studies such as developing technologies for sustainable procurement of raw materials and energy required for their synthesis. #### 3) Exploration of novel thermo-optical properties of nanoscale and quantum materials We are studying new methods for the synthesis and growth of quantum materials, as well as exploring novel physical properties and functions of such materials to realize high-performance energy conversion technologies that can surpass the physical limits posed by conventional materials. As a research infrastructure for this purpose, our laboratory is equipped with crystal growth systems of various quantum materials and advanced physical property measurement facilities that can perform various spectroscopic measurements, such as time-domain, frequency-domain, spatially-resolved, polarizationresolved, and microcurrent measurements on microscopic samples in a wide temperature range. As a part of the research using such facilities, we are studying infrared photoelectric conversion phenomena due to the unconventional mechanism in topological quantum materials. Ultimately, we aim to develop an efficient direct photoelectric conversion technique for mid-infrared thermal radiation from heat sources such as industrial waste heat, geothermal heat, and domestic waste heat. Synthesis and assembly of various quantum materials Broadband optical property measurement ### **Advanced Laser Science Research Section** The use of lasers enables us to provide energy to the target materials and monitor their real-time change without any physical contact. We fully utilize such properties of lasers to synthesize nanomaterials and carry out the real-time monitoring of their dynamics. #### In-situ synthesis and real-time analysis of nanomaterials using lasers Typical strategies to modify the film properties are to introduce a multilayer structure or nanoparticles in the film matrix. Our aim is to develop a new technique to in-situ synthesize nanoparticles in the film matrix using a laser, and utilize them for new optical devices. Another important subject we are working on is to develop a new optical technique to monitor the formation of nanobubbles during the electrolysis with an aim to improve the efficiency of water electrolysis for the efficient production of hydrogen gas. Yuhei Miyauchi #### Optical detection of bubbles during electrolysis By clarifying the formation process of hydrogen bubbles during the water electrolysis by laser scattering technique we can design better electrodes with optimized morphology. In-situ synthesis of polymer-metal nanocomposite film By irradiating a CO_2 laser at 1 W for 10 sec the polymer film with a precursor of nanoparticles turns into nanocomposite films. ## Advanced Energy Structural Materials Research Section Innovative structural materials R&D with focusing on nanomeso structural control, and basic research for understanding materials performance and behavior Associate
Professor Kazunori Morishita Assistant Professor Kiyohiro Yabuuchi Professor (Concurrent) Yuhei Miyaushi #### Multiscale Modeling of Irradiation Processes of Fusion Materials Many international programs are being underway for developing nuclear fusion reactors, which are one of the promising earth-friendly candidates for future energy sources. Material's issues are of critical importance, because reactors' integrity is basically determined by the component materials that suffer from severe irradiations. For developing irradiation-resistant materials, the database on materials' behavior during irradiation is required. However, they should reluctantly be obtained using the alternative, existing irradiation facilities such as fission reactors and ion accelerators, because of no actual fusion reactors at present. To overcome the difficulties caused by the difference between the two environments, a methodology to predict material's behavior in the actual environment using the existing materials' data is required. Our efforts have been made to establish the methodology. Molecular dynamics, kinetic Monte-Carlo, ab-initio calculations, and rate-theory equations are powerful tools to understand radiation damage processes, which occur at a wide variety of time and length scales. #### Multiscale radiation damage process Radiation damage processes show different behavior depending on time and length-scales that you are observing. To understand these multiscale phenomena, various investigation methods using computer simulations and experiments should complementarily be employed. #### R&D of fusion reactor materials We study the materials for divertor and blanket to realize fusion reactor. It is essential for fusion reactor to develop plasma facing material. Plasma facing material is used under the high heat flux and high energy particle irradiation such as neutron. Especially, the property degradation due to the high energy particle irradiation (irradiation embrittlement) is one of the most important issues for lifetime of fusion blanket. It is required to predict the degradation for the design and economy. We study the irradiation embrittlement using an ion accelerator, DuET. DuET has two beam line, heavy ion beam and He ion beam, and it enable the irradiation experiment under the condition close to the fusion reactor. We join various domestic and international project to realize the fusion reactor. # Fundamental study for materials science Lattice defects play an important role in the various issues and property changes in materials. Ion accelerator has been well known as the way to induce oversaturation point defects into materials and has contributed to the development of materials science. We study on the point defects in materials using the ion accelerator to elucidate the fundamental theory of materials science. Moreover, we develop the materials with higher or new properties by nanomeso microstructure control. The interaction between vacancy cluster induced by ion accelerator and a dislocation: comparison between experimental study and computational study. ## Nano Optical Science Research Section We are studying about development of novel optical physics and its application for energy conversion based on nano-science from the viewpoint of solid state physics, material science, and device engineering. #### **Development of Novel Optical** Physics and its Application for **Energy Conversion** Research objectives in our group are "development of novel optical physics and its application based on nano-science for energy generation and conversion". We are trying to open new horizon on the energy science by introduction of nano-materials, quantum optical physics, and device application. The understanding of physics of emerging quantum optical phenomena in extreme lowdimensional materials are important issues toward next generation light energy sciences. #### 1) Photophysics and Applications of Nanomaterials In the nano-meter size materials (nanomaterial), the novel electronic and optical properties are emerged by quantum effect of electronic systems. Our research focuses on photophysical properties and applications of nanomaterials including carbon nanotubes, graphene, and atomically thin semiconductors in which distinct quantum effects dominate their physical properties. We make use of advanced optical spectroscopic techniques to clarify the physical properties of nanomaterials for developing novel energy-efficient devices. Physics in quantum light phenomena, and application for novel energy devices. (Left) Schematic of valley-spin polarized exciton dynamics in atomically thin materials and novel excitonic states in their artificial hetero-structures. (Right) Novel energy conversion device based on atomically thin semiconductors and graphene. Flexible solar cell device using the organic-inorganic perovskite materials. #### 2) Novel Photonics Based on **Atomically Thin Materials** Atomically thin-layered material including graphene comprising from monolayer carbon atoms has attracted much interest for both fundamental research and practical application because of exotic quantum states. In the atomically thin materials, the strong coupling of valley and spin degree of freedom induces novel physical degree of freedom as "valley-spin" in monolayer two dimensional transition metal dichalcogenides (MX2; M=Mo, W, X=S, Se, Te). Recently, we photonics. Development of valley-spin quantum photonics in artificial hetero-structure. (Left) Schematic of quantum control of valley-spin polarized states in artificial hetero-structure. (Right) Experimental setup of state of art femtosecond spectroscopy and device structure for valley-spin quantum optics. Kazunari Matsuda Keisuke Shinokita ## **Chemical Reaction Complex Processes Research Section** We are studying materials and systems to realize renewable energies like photovoltaics and bioenergy as the major primary energy source for human beings. We are conducting innovative researches that cover the phases from basic research to applications mainly based on electrochemistry and biochemistry. Program-Specific Associate Professor Kenji Kawaguchi Assistant Professor Takayuki Yamamoto Yutaro Norikawa Professor (Concurrent) Toshiyuki Nohira #### Development of new production processes for solar silicon utilizing molten salt electrolysis Crystalline silicon solar cells are the most spreading in the world owing to the advantages of high efficiency, high durability, harmlessness for the environment, and abundant resources. Naturally, they are expected to play a major role in the era of full-fledged dissemination of solar cells. However, high purity silicon (or solar-grade silicon, 6N purity), which is necessary for the solar cells, is currently produced by a similar method that was developed for the production of semiconductor-grade silicon (11N purity). A new production method of solar-grade silicon is required because the conventional production method has the disadvantages of low energy efficiency, low productivity, and high cost. From this background, we have proposed a new production method of silicon from the purified silica (SiO2) feedstock by using molten salt electrolysis. We have already verified the principle of the method, and are now tackling the development of continuous electrolysis process and the improvement of purity. Also, we have proposed a new production method of crystalline silicon film by molten salt electroplating. For this method, we have already confirmed the principle as well. We are now taking on the improvement of fi Im quality and the utilization of SiCl4 as a silicon source. A new production method of solar-grade silicon by the electrochemical reduction of silica in molten salt A new production method of silicon films for solar cells by the molten slat electroplating #### Development of Plating Process of Titanium Utilizing Molten Salt Electrolysis To utilize surface properties of titanium and its alloys, a method to form a titanium film on the substrate has shown great promise. We are developing a plating method in molten salt as a method that enables uniform titanium deposition even on substrates with complex shapes. Obtained Ti films with smooth surface by the molten salt electroplating #### Development of next-generation batteries using highly-safe ionic liquid electrolytes Renewable energy resources such as solar and wind power are intermittent resources, and their power generations are largely dependent on the weather. Thus, introduction of a large amount of renewable energy requires large-scale power storage systems such as large-sized batteries. Although current lithium-ion batteries are candidates for large-sized batteries, scarce resources (lithium, cobalt) and flammable electrolytes (organic solvents) are used as main components, which will be a major barrier for the widespread distribution in the future. Therefore, we are now developing next-generation batteries utilizing abundant resources (sodium, potassium, etc.) and safer electrolytes (ionic liquids). Principle of potassium-ion battery ## Molecular Nanotechnology Research Section Nanoscience and technology, ultimate method for producing new materials assembling from single molecules, are studied for energy sector such as organic transistors and solar cells. # Nanoscience and technology using single molecules Nanoscience and technology, ultimate techniques for producing new materials assembling from single molecules, are desired to apply in energy sector. Highly efficient devices such as field-effect transistors, solar cells, batteries could be realized by using nanotechnology. We have developed "Electrochemical Epitaxial Polymerization" technique which is a totally new molecular assembling technique of molecular wires on metal surface from single molecules using intense electric field at solid-solution interface (electric double layer). Also, "radicalpolymerized chemical vapor deposition"
technique which is totally new method to produce grapheme nanoribbons using high concentration of monomer radicals at interface between substrate and gas has been developed. Unprecedented molecular-wire materials consisting of carbon for energy usage will be developed by the use of these techniques. Polycyclic aromatic hydrocarbon molecules for a monomer of molecular wire and for molecular electronics will be synthesized using our new methodology. Organic electronic devices such as field effect transistors, photovoltaics, batteries and photocatalysis will be developed using our new techniques. Conducting polymer wires array Conducting polymer wires array on metal surface by the use of 'Electrochemical Epitaxial Polymerization' technique. Bottom-up synthesis of graphene nanoribbons Extremely narrow carbon wires developed by our bottom-up surface synthesis technique. Bio-mimetic surface synthesis of graphene nanoribbons GNRs can be produced by bio-mimetic principles consisting of chiral transformation, of designed z-bar-linkage precursors, self-assembly, homochiral polymerization and dehydorogenation. Strain-induced skeleton rearrangement of hydrocarbon molecules on surface Designed spring molecules on Cu surface can be transformed into the functional fluvalene skeleton. Hiroshi Sakaguchi Assistant Professor Takahiro Kojima Shunpei Nobusue ## **Biofunctional Chemistry Research Section** Our research group is exploring the design and the construction of biomacromolecules "tailored" for pursuing highly efficient energy utilization. Associate Profess Eiji Nakata Assistant Profess Peng Lin Professor (Concurrent) Toshiyuki Nohira #### A design principle of functional biomolecules for highly effective energy utilization A transition to renewable energy technologies requires new chemistry to learn from nature. It is our challenge to understand the efficient bioenergetic processes of nature and to construct human-engineered energy utilization systems. The research interests in our group focus on the design and assembly of biomacromolecules for energy conversion, catalysis and signal transduction in water, the solvent of life. We take synthetic, organic chemical, biochemical and biophysical approaches to understand the biological molecular recognition and chemical reactions. Combination of protein including enzyme, nucleic acids, artificial molecules and their complex are explored to construct artificial biomimetic devices mimicking the function of biological systems and imaging cellular signals by fluorescent biosensors. New biomolecular assemblies are designed to realize artificial metabolic systems for useful chemicals. ## Nanoassembly of enzymes and receptors to realize artificial metabolic systems Cellular chemical transformation processes take place in several reaction steps, with multiple enzymes cooperating in specific fashion to catalyze sequential steps of chemical transformations. One is the most popular natural system is photosynthesis system. Such natural systems are effectively reconstructed in vitro when the individual enzymes are placed in their correct relative orientations. DNA nano-structure such as DNA-origami can be used as "molecular switchboards" to arrange enzymes and other proteins with nanometer- scale precision. A new method was developed based on proteins, to locate specific proteins by means of special "adapters" known as DNA binding proteins. Several different adapters carrying different proteins can bind independently to defined locations on this type of nanostructure. By using the system, nanoassembly of enzymes and receptors will be constructed as the multi-enzymatic reaction system to realize artificial metabolic systems. ## Construction of intracellular fluorescent sensors to visualize energy utilization processes in living cell. Fluorescent sensor for visualizing metabolic reactions, which are the energy utilization processes of living cells, are constructed using synthetic chemistry or genetic engineering methods to advance the understanding of energy utilization processes in cells. In particular, we will construct multi-target detectable sensors, which can simultaneously monitor the change in concentration and location of biologically important molecules and the change in cellular environment indicated by various physical parameters will provide a comprehensive understanding of the molecular mechanisms underlying various cellular processes. ## Structural Energy Bioscience Research Section We study development of efficient utilization of woody biomass and understanding of life phenomena related to diseases on the basis of structural biology. #### Efficient utilization of woody biomass and life phenomena related to diseases on structural biology We develop the way to efficiently obtain bioenergy and value-added materials from woody biomass by means of powers of living organisms or enzymes, without emission of hazardous substances. Our final goal is the paradigm shift from oil refinery to biorefinery. We also develop the method to directly obtain NMR spectra of nucleic acids and proteins introduced into living human cells. With this in-cell NMR method, we study life phenomena related to disease for development of drugs. Both the researches are conducted at molecular/atomic resolutions. Biorefinery based on biodegradation of woody biomass studied by NMR Establishment of biorefinery on the basis of biodegradation of wood biomass studied by NMR Obtained the direct evidence of the lignincarbohydrate linkage in wood cell walls by the heteronuclear multidimensional NMR techniques The real-time NMR observation of the ssDNAspecific cytidine-deaminase activity of APOBEC3B Masato Katahira Associate Professor Takashi Nagata Yudai Yamaoki Observation of the in-cell NMR signals of the hairpin structure forming DNAs and RNAs introduced inside the living human cells #### **Self-Assembly Science Research Section** The aim of this research is to construct the supramolecular assemblies of the topologically interlocked components inside a DNA origami. Such assemblies of the functional structures are promising in the fields of molecular switches, motors, sensors, and logic devices. Junior Associate Professor Arivazhagan Rajendran Professor (Concurrent) Masato Katahira #### Nanomolecular fabrication of supramolecular assemblies DNA molecules are not merely associated with genetics and the carrying of information. They have been used as excellent construction units in structural DNA nanotechnology due to their unique structural motifs and robust physicochemical properties. I have been working on the self-assembly of DNA origami (a method to create nanostructures by folding DNA) nanostructures to create micrometer scale structures that can be used for several applications such as fabrication of nanodevices, analysis of biomolecular reactions, and templates for various applications. Also, I have utilized these nanostructures for the single molecule analysis of various biomolecular reactions, structure and function of DNA and proteins, and enzymes related to biomass energy conversion. Recently, I have been collaborating with the research groups of Dr. Eiji Nakata (IAE, Kyoto University) and Prof. Youngjoo Kwon (Ewha Womans University) for the nanofabrication of the topologically interlocked supramolecular assemblies. Topologically interesting structures such as Borromean rings, catenanes, rotaxanes, and knots have been prepared by using duplex DNAs. Also, the complexity of the catenane and rotaxane structures were increased by constructing them by the DNA origami method. However, integration of the duplex DNA catenanes and rotaxanes with functional sequences to the relatively larger and complex DNA nanostructures such as DNA origami has not yet been realized. We have successfully fabricated the DNA catenane and rotaxane structures inside a frame-shaped DNA origami. Apart from the applications in nanotechnology, these interlocked structures can be used for the biomolecular analysis, such as enzymatic reactions and drug screening. For example, these topological structures can be used as the potential substrates for the topoisomerase (Topos) enzymes, and screening of Topo inhibitors. Among the various types of DNA-binding proteins, Topos are quite attractive due to their importance in cancer therapy. Topos regulate the topological problems of DNA that arises due to the intertwined nature of the double helical structure. These enzymes also play an important role in various biological processes such as replication, transcription, recombination, and chromosome condensation and segregation. Topos resolve the topological problems by transiently cleaving the phosphodiester bond, which generates a Topo-DNA cleavage complex. Once the winding stress is resolved, the Topo-mediated DNA break is resealed. This process is critical for the healthy cells to survive and function normally. Failure to reseal the DNA break can ultimately lead to cell death. This Topo-DNA cleavage complex and various other steps (such as binding of Topo to DNA, ATP driven strand passage, strand cleavage by Topo, formation of Topo-DNA cleavage complex, religation of cleaved DNA, and catalytic cycle after DNA cleavage/enzyme turnover) involved in the Topos function are of great interest as potential targets for the development of anticancer drugs. Despite the development of various Topo-inhibitors, the mechanism of action of these anticancer drug molecules is not well known. Thus, to understand the Topos reaction and the mechanism of the inhibitors, it is necessary to develop an elegant method. Here, we aim to develop a novel method by using our supramolecular assemblies of the catenane and rotaxane inside a DNA origami and high-speed atomic force microscopy (HS-AFM) for the screening of Topo-inhibitors. The formation of the DNA origami frame and the insertion of the catenane and rotaxane structures were characterized. The Topo reactions and the
function of Topo-inhibitors are under investigation. Apart from the Topo reactions and inhibitor screening, the supramolecular assemblies of the topologically interlocked components inside a DNA origami are also promising in the fields of molecular switches, motors, sensors, and logic devices. DNA rotaxane and catenane inside a DNA origami frame Left: The illustration of the topologically interlocked DNA rotaxane and catenane inside a DNA origami frame. Right: AFM images of the respective structures. ## **Environmental Microbiology Research Section (Donation Program)** Energy issues and environmental issues are inseparable. We are still highly dependent on fossil energy, and there is concern that discharged greenhouse gases will break the harmony of global environment. In addition, we need large amount of energy to remediate an environmental pollution that remains the shadow of the progress of civilization with fossil fuel energy consumption. As one of the creating methods for sustainable society, we confront the development of practical applications utilizing "enzymes" that are highly energy utilization efficiency in substance catabolism. #### Establish an optimal process utilizing the oxidation-reduction reactions of enzymes for advanced environmental remediation Polychlorinated biphenyls (PCBs) are organochlorine compounds containing theoretically 209 homologs of various chlorine substituents, and it had used in various industrial applications as "dream substance". However, PCBs has been already promoted globally abolition of the usage and the manufacturing since it was proven human endocrine disruptor. Biphenyl dioxygenase (BDO) plays a crucial role for degradation of PCBs. BDO catalyzes incorporation of two oxygen atoms into the aromatic ring of PCBs, and it induces the ring cleavage. We developed the composite type of catalytic enzymes with two BDOs that having different substrate specificity and the bioreactor for generating oxygen microbubbles that enhancing the enzymatic activity of BDOs. As the result, we succeeded constructing the practical system using both the catalytic enzyme and the microbubbles that degraded over 99% of 40 mg L⁻¹ commercial PCBs in 24 hours. In order to expanding this composite degradable reaction of PCBs, we are trying to create unique artificial enzymes, which reduce PCB by two-electron reduction. A. Scanning Electron Microscope image of Comamonas testosteroni YAZ2 strain which produce biphenyl dioxygenase (BDO). This strain is gram negative and rod-shaped bacterium. Magnification is x10,000. Scale-bar is 1 µm. #### Oxygenation C. Enzymatic reaction showing how BDO hydroxylates one aromatic ring by adding oxygen to biphenyl. B. Molecular structure model of BDO which catalyze oxygenation reaction toward PCBs (Ref: PDB). E. Morphological study of Trichoderma viride NBRC 30546 strain which was treated by enzyme(s) (right) compared with the control (left). Enzyme reaction was carried out at 30°C for 6 hours. Trichoderma viride NBRC 30546 strain was stained with lactophenol cotton blue. Magnification is x400. Scale bar is 50 µm. D. The result of reacting 40 mg L⁻¹ of commercial PCBs with composite type of catalytic enzyme, it degraded to 0.3 mg L⁻¹ in comparison with the control (top) within 24 hours (bottom). PCBs was analyzed by gas chromatograph quadrupolemass spectrometer. # Establish an optimal plant disease control methods utilizing enzymatically reaction for an organic food production Many of plant diseases are generally caused by either ascomycetes or basidiomycetes that belonging to filamentous fungi. "Filamentous fungi" is hypha, and it is proliferated to mycelia. The cell wall is engineered as a composite material. It incorporates a mix of crosslinked fibers and matrix components. The fibrous components of cell wall are glucan, chitin, and mannan, and these sugarchains contribute forming a supple and solid filiform microfibril wall. Glycosidase is one of the hydrolases that catalyzes the hydrolysis of glycosidic bonds in complex sugars. We develop a new biomolecular type of fungicide utilizing the hydrolysis reaction of glycosidase against fungal microfibril wall. Up to now, our composite type of bacterial catalyst composed of 5 strains from class Bacilli, which produce and secrete various glycosidases, controlled 99.3% of a tomato- Pestalotia disease with Pestalotiopsis sp. Glycosidases are classified into approximately 130 families, and its catalytic reaction is roughly divided into anomeric-inversion and/or anomer-retention, and exoglycosidase or endglycosidase. Hence, the classification of glycosidase can be understood diverse, and we consider that it is possible to digest fungi cell wall efficiently, by compositely capably using these diversities of enzyme reactivity. Tomijiro Hara Yumiko Takatsuka Institute of Advanced Energy ## Biomass Product Tree Industry-Academia Collaborative Research Laboratory We aim at the development of new conversion process and sustainable circular use of biomass. Professor (Concurrent) Masato Katahira # Determination of Fine Structure by NMR and Development of Utilization Using Enzymes of Biomass Kyoto University and Daicel Itd. have been carrying out collaboration aiming at realization of circular-type low-carbon society and development of industries. We have contracted the comprehensive cooperation agreement on October 1, 2021. The contract will stand for eight and half a year until 2030. Our Institute has started "Biomass Product Tree Industry-Academia Collaborative Research Laboratory" in collaboration with Research Institute for Sustainable Humanosphere, Institute for Chemical Research and Daicel Itd. Professor Katahira's group participates in the Discovery of the enzyme LPMO that dramatically enhances the breakdown of cellulose in collaboration with cellulases and elucidation of the operation mechanism. (Left) Enhancement of the breakdown of cellulose by the combinatorial use of LPMO and cellulases. (Right) Molecular structure of LPMO in action of breaking down of cellulose. Collaborative Laboratory with the research theme of "Determination of Fine Structure by NMR and Development of Utilization Using Enzymes of Biomass". Currently, nineteen members are engaged in the Collaborative Laboratory. #### **Adjunct Faculty Members** #### Advanced Energy Generation Division Advanced Energy Research Section Botany and Microbiology Dept., Faculty of Science, Assiut, Al-Azhar University, Egypt. Dr. Sadat Mohamed Rezk Khattab obtained his PhD from the Faculty of Science, Al-Azhar University, Assiut branch, Egypt, through a joint supervision program with the Institute of Advanced Energy (IAE), Kyoto University, Japan, under the guidance of Prof. Tsumu Kodaki in 2010. Following this, he served as a lecturer at Al-Azhar University for four years before undertaking a six-month postdoctoral fellowship at IAE as an Egyptian fellow. In 2016, he held the position of a distinguished senior visiting lecturer at Prof. Katahira's lab, IAE, for four months. Dr. Sadat subsequently advanced to the position of Associate Professor at the Faculty of Science, Al-Azhar University in 2016. Since 2017, he has been actively engaged in various roles within the biomass conversion laboratory at the Research Institute for Sustainable Humanosphere (RISH) and Prof. Katahira's lab, IAE, serving as a visiting scholar, researcher, and associate professor. His research endeavors and collaborative efforts are primarily focused on lignocellulosic biomass conversion to bio-based fuels and chemicals, employing metabolic engineering to develop hyper-fermenting yeasts and advance eco-friendly biorefinery scenarios. #### Laboratory for Complex Energy Processes #### The Laboratory for Complex Energy Processes This Laboratory is a core research center for strategic and multidisciplinary collaboration studies in IAE, offering cooperative project activities in the field of the advanced energy. The Center has three divisions: (1) "Division of Plasma and Quantum Energy Research", for fusion and related advanced energy studies, (2) "Soft Energy Science Research", that promotes innovative functional materials based on nanotechnology and biotechnology, and (3) "Division of International and Industrial Partnership" that promotes and enhances activities and relationship with foreign and domestic research partners including industry and private sector. This center provides a platform for the collaborative and ambitious research activities of the IAE in the field of advanced energy studies. #### Objectives The project studies in the Laboratory are focused on innovative and advanced concepts on the advanced energy science for the sustainability of humankind based on the latest understanding and consideration on the energy and environmental problems. We focus our efforts on two specific priority-fields at the divisions for, (1) "Plasma and Quantum Energy Research" and (2) "Soft Energy Science Research". The multidisciplinary collaboration projects are promoted in these two fields at each division with large scale research facilities used for project oriented studies. Two sections also belong to the Laboratory. The third division is established to promote international and domestic collaborative activities with various events, by planning, arranging and supporting function with various partners including governmental institution and industries. Moreover, as activities in Kyoto University, we continue to provide human resources to lead innovative energy studies based on the experiences of 21COE and GCOE programs on energy science. Development of human resources in the advanced energy field is a major function, and as in the past in several educational projects, seminars, internship and courses are included. Bilateral Collaborative Research Program in National Institute for Fusion Science (NIFS), on the study of plasma energy is promoted under the inter-university collaboration. We pursue various
types of collaborations with other partners and through these activities. Donation Program for collaboration with industry and private sector belongs to the Laboratory. #### **Activities** The Laboratory organizes the cooperative research programs for the scientists from various energy-relating fields inside/ outside IAE. The Laboratory also provides the functions for exchanging the scientific information among the collaboration members by organizing or supporting various kinds of symposia, seminars and events for the specific topics on the fields of energy science and technology. A number of significant results have been published from these multidisciplinary collaboration projects in the Laboratory. Also, four sections belong to the Laboratory; "Self-Assemble Science", "Broad Band Energy Science", the Donation Program "Environmental Microbiology", and "Biomass Product Tree Industry-Academia Collaborative Research Laboratory". The Laboratory has several large-scale research facilities for the collaborations; (1) Advanced energy conversion experimental devices (Heliotron J), (2) Free electron laser (KU-FEL), (3) NMR facilities, (4) Multiscale testing and evaluation research systems (MUSTER), (5) Compact and portable inertial-electrostatic confinement (IEC) fusion neutron/proton sources, (6) System for creation and functional analysis of catalytic material, etc. Transmission lines in the laboratory 100t crane Motor generator The Core Institution for Collaboration Research in the Field of Advanced Energy Science and Technology #### The Major Facilities and Equipment of The Laboratory The Laboratory is consolidating several major facilities for the research programs of the Institute of Advanced Energy. Outlines of the facilities which are described below. #### Heliotron J In our Institute, a unique helical device Helitoron J is now in operation, which is based on a Kyoto-University original concept of "helical-axis heliotron", to investigate the high-level compatibility between (i) good plasma confinement and (ii) MHD stability in the heliotron line. This project is expected to open up a new frontier of the novel plasma parameter regime in the toroidal fusion devices. The major radius of the torus is 1.2 m and the maximum magnetic field strength is 1.5 T. #### MUSTER Facility In order to accelerate the achievement of industrial technology innovations, the comprehensive materials/system integration studies have been performed by means of multi-scale evaluation methods covering from nano-scaled analysis to the practical size of mechanical tests. #### · KU-FEL (Kyoto University Free Electron Laser) The KU-FEL provides coherent and tunable laser in Mid-IR region ranging from 3.4 to 26 µm. The tunable IR laser has been utilized for basic study of high-efficiency solar cells, mass measurement of chemicals from biomass and selective phonon mode excitation in wide-gap semiconductors by collaboration research. #### NMR Facilities Four NMR machines, including 800 MHz machine linked with liquid chromatography and mass spectrometer and three 600 MHz machines equipped with super-high sensitivity cryogenic probes, are operated to elucidate the three-dimensional structure and dynamics of biomass and biomolecules at atomic resolution. On the basis of the obtained knowledge, we are developing the way to extract the energy and valuable materials from the biomass and biomolecules. Multi-Scale Testing and Evaluation Research facility (MUSTER), KU-FEL, and NMR Facilities are open for industries to evaluate materials performance from the viewpoint of multi-scale structure; atomic size, defect size, grain size, etc. to understand the materials behavior in practical applications. Our facilities have supported 86 companies to contribute in their progress of innovative materials R&D. #### Cooperative Research Besides of an inter-university collaboration program for researchers of energy relating communities, which is promoted by Joint Usage/ Research Center of Zero-Emission Energy Research, IAE, the Laboratory organizes an original cooperative research programs, "Center Collaborative Research" and "Center Sprouting Research", for IAE researchers under two divisions. This program is supported by "Cooperative and Exploratory Research Grant of Laboratory". The Laboratory also provides the functions for exchanging the scientific information among the collaboration members by holding various kinds of symposiums, seminars for the specific topics on the fields of energy science and technology. #### Organization of Research Projects in the Laboratory #### **Division of Plasma and Quantum Energy Research** This division promotes studies on advanced plasmas and quantum energy for realizing future energy systems, integrating plasma energy science and advanced energy material research. In particular, based on the results obtained in each related group, we aim at extending the research fields and contributing to human society by utilizing the existing key devices such as Heliotron J, DuET, MUSTER and IEC (Inertial Electrostatic Confinement) device, which have been developed in IAE. | Group of advanced plasma
energy control and application
research | This group promotes fundamental understanding of self-regulated plasma, development of its control system, putting emphasis on generation of advanced plasma energy from experimental and theoretical viewpoints. Extension and enrichment of plasma energy application are also investigated. | | | | | | |--|--|--|--|--|--|--| | Group of plasma, hydrogen, and material integration research | This group promotes the research on optimization of plasma reaction process in hydrogen cycle and understanding the mechanism of plasma-materials interactions in order to develop highly efficient and controllable energy systems. | | | | | | | Group of advanced energy materials- nuclear systems research | This group promotes the research on nano-meso structure control for high performance materials and materials-systems integration in order to develop innovative energy materials for advanced nuclear energy systems. | | | | | | #### **Division of Soft Energy Science Research** This division promotes studies on emergent materials and systems for realizing next generation soft energy system. In particular, functional nano- and bio-materials to efficiently utilize solar energy and bio-energy are studied by integrating laser science and expand to THz region, nanotechnology, bio-technology and their combination. We aim at extending our research fields by utilizing the existing devices such as System for Creation and Functional Analysis of Catalytic Materials, SEMs, SPM, Solar Simulator, KU-FEL and various laser systems. | Group of nano-bioscience research | This group aims at the study on the function and the structures of bio molecules from the basic to application level. Understanding the fundamental aspects of molecular recognition, protein folding, enzymatic reactions, and the assembly formation by proteins and nucleic acids will explore a new horizon of the bio energy related nano-bioscience research, such as the development of nano-bio devices that accelerate the efficient utilization of solar energy and the biomass resources. | | | | | | |---|--|--|--|--|--|--| | Group of quantum radiation and optical science research | For contributing to innovative progress in quantum radiation and photon energy science, this group aims at demonstrating potential abilities of light and radiation through the development of advanced coherent radiation sources with novel functions and their applications to materials control and photoreaction dynamics research. | | | | | | | Group of surface and interface science research | This group studies surface science to produce the various functional materials used in energy sector. Surface and interface of matters can be used as a template to synthesize extra-ordinal materials because of their different atomic arrays from the bulk. Research involves in semiconductor porous materials, molecular wires and organic materials for photovoltaic cells in next generation. | | | | | | #### **Division of International and Industrial Partnership** This division promotes international collaborative research on advanced energy to lead the field of energy science and technology as an international pioneer. For this purpose, the symposium and the workshop organized by institution member are supported. This section also promotes young researcher/student exchange, cooperative research activities and multi-lateral collaborative research with industries. Establishment of infrastructure and human resource development are also supported. | Group of promotion for international collaborative research | This group promotes international collaborative research to solve global issues on advanced energy. | | | | | | |---|---|--|--|--|--|--|
| Group of promotion for domestic collaborative research | This group promotes domestic collaborative research to lead advanced energy science and engineering with focusing on human resource development. | | | | | | | Group of promotion for collaborative research with industries | This group supports research projects founded by government and/or industries to accelerate the progress in the researches with high social acceptance. | | | | | | ## **Integrated Research Center for Carbon Negative Science** To develop carbon-negative technologies, we are engaged in research to convert carbon dioxide into useful materials using renewable energy, biomass, etc. Toshiyuki Nohira Keiko Kondo Surachada Chuaychob #### **Production of Useful Substances** from Carbon Dioxide Using Molten Salt Electrolysis The conversion of carbon dioxide into useful substances is expected to contribute to the realization of a carbon-neutral society by 2050. If all the carbon dioxide generated from thermal power plants and steel-making plants is captured and converted into useful substances (Carbon Dioxide Capture and Utilization-CCU), it will greatly contribute to the carbon neutrality of our society. Furthermore, if carbon dioxide is captured from the atmosphere (Direct Air Capture-DAC) and converted into useful substances, it becomes carbon negative, which is even more significant. We have focused on molten salt electrolysis as a new method to convert carbon dioxide into useful substances. When carbon dioxide is injected into molten salt containing oxide ions (O2-), carbonate ions (CO₃²⁻) are produced. When they are reduced at the cathode, various types of carbon are produced. Here, we are challenging to produce diamond, which is one of the most valuable allotropes of carbon. We are studying the optimum conditions for diamond formation by varying the temperature, composition of the molten salt, electrolytic potential, and other factors. So far, it has been found that diamond is formed by hydrogen generation from hydroxide ions (OH-) at the same time as carbon is deposited. Since OHT is produced by injecting water into the molten salt containing O2-, diamonds can be synthesized using only carbon dioxide and water as raw materials. The byproducts of this process are amorphous carbon, hydrogen gas, hydrocarbon gases (methane, etc.), and other useful substances, as well as non-toxic oxygen gas, making it a clean electrolysis method that does not emit hazardous substances. #### **Development of Biological Conversion Processes of Plant Biomass** Carbon dioxide fixation proceeds in nature through photosynthesis by plants, where the carbon dioxide is converted to organic compounds and accumulated. Our society has been developed depending on various chemical products derived from fossil resources. Techniques to produce such chemical products from plant biomass enable long-term fixation of carbon, which accumulates in plants, as chemical products and leads to the realization of negative carbon emission. Lignocellulosic biomass such as wood is promising plant biomass that does not compete with food demands and contains lignin, an aromatic resource alternative to fossil fuels. We are studying enzymes produced by wood-degrading microorganisms to reveal the mechanisms underlying the degradation of polysaccharides and lignin in the lignocellulosic biomass. On the basis of the findings, we are also working on the development of methodologies for separating, decomposing, and modifying each component of lignocellulosic biomass through biological processes using enzymes. Our research aims future development of a sustainable society that incorporates a material production system into the natural carbon cycle system. molten salt electrolysis. Production of useful substances from carbon dioxide by #### Integrated Research Center for Carbon Negative Science #### Overview of Integrated Research Center for Carbon Negative Science On our planet, carbon dioxide is used as a carbon currency through the carbon cycle system of living organisms. Until now, the balance between emissions and absorption of this currency, carbon dioxide, has been maintained. But rapid human activity since the Industrial Revolution has led to an imbalance between emissions and absorption of carbon dioxide, and carbon dioxide emission has become excessive. To return to a balanced state, i.e., carbon neutrality, it will be difficult to achieve with "Zero Emission" technology alone, as they are usually referred to. It is necessary to create a new energy system by introducing more aggressive carbon dioxide fixation processes. The Integrated Research Center for Carbon Negative Science (ICaNS) was established to develop such new carbon dioxide fixation technologies in 2022. In collaboration with the Graduate School of Engineering and the Graduate School of Energy Science at Kyoto University, the Center will also work on human resource development for "carbon negative energy", which is relatively new at this point in time. #### The Activity of the Integrated Research Center for Carbon Negative Science The ICaNS was established in 2022 as a platform to promote cross-disciplinary and dynamic research on carbonnegative energy within Kyoto University, starting from the collaboration between the Institute of Advanced Energy and the two graduate schools of Energy Science and Engineering. The center has established three projects to promote research with the benchmark of a 46% reduction in greenhouse gas emissions by 2030. The projects include the development of "wavelength-selective and quantum conversion carbon nanotubes" from CO₂, "atmospheric pressure and low-energy diamond electrolytic synthesis" from CO₂ and water, and "graphene nanoribbon semiconductors" and "high value-added chemical products" made from CO₂ using extreme microbes. In order to promote and develop such advanced interdisciplinary research and to link it to social implementation, it is necessary to "develop human resources to support academic and social implementation of carbon negativity," and faculty members from three departments and seven majors within the university will gather at the center to conduct research and education using state-of-the-art research facilities while integrating diverse academic foundations. The center will also provide research and education using state-of-the-art research facilities. Using this as a foothold, further collaboration and new knowledge will be introduced in the future by all-Kyoto University to advance new "carbon-negative" academics. Furthermore, we will promote external and international collaboration to create carbon-negative energy technologies that contribute to social innovation and contribute to the development of human resources with an international carbon-negative perspective, with a view toward the realization of a carbon-neutral society in 2050 and beyond. The formation of such a research and education center through flexible collaboration between the university's research institutes and multiple graduate schools will directly contribute to strengthening the functions of the university and the infrastructure for joint usage and joint research centers. The center's research on the use of CO₂ as a useful resource will lead the way toward a new paradigm, "carbon negativity," in which the university takes the initiative. In addition, as a social ripple effect, it is expected to simultaneously achieve carbon negativity and regional development through projects such as carbonization and functionalization projects combining solar power generation on abandoned farmland and woody biomass from reforested abandoned land. These, together with the formation of a new academic community, will set a new path for solving global energy and environmental issues and realize a carbon-neutral society in 2050. ## **Major Projects** #### Inter-University Research Program (MEXT) #### Research Project for Zero-Emission Energy System Leader: Director of IAE Project Period: the 1st term: FY2011-2015 the 2nd term: FY2016-2021 the 3rd term: FY2022-2027 The energy system for next generation should be an environmentally friendly or ecological one, we propose an innovative concept of Zero- Emission Energy. IAE Zero-Emission Energy Research aims at the realization of environmentally friendly energy system for sustainable society with minimum emission of environmental pollutants (Greenhouse Gases, Air Pollutions, Waste Energy, Hazardous Wastes, etc.), and with maximum utilization of energy and resources. This project promotes interdisciplinary researches of energy relevant fields, education and training of young students and researchers in the field of advanced energy science. The "A" evaluation has been given at the end-of-term evaluation held in 2021 by MEXT. ## Joint Usage/Research Center at IAE on "Zero-Emission Energy" - To promote interdisciplinary collaboration researches for Zero-Emission Energy Science & Technology - To explore new horizon of Advanced Energy System for sustainable Development - · To promote education & practical training for young researchers A number of projects are currently underway in both scientific and engineering fields of advanced energy to realize a sustainable society that is in harmony with the environment through advanced generation, conversion, and utilization of energy. #### Activities in FY2023 - Joint Usage/Research Collaborations: In total, 94subjects with 360 participants from 105 organizations - International Symposium (August 30 September 1, 2023) (Hybrid) "The 14th International Symposium of Advanced Energy Science" - Research Activities on Zero Emission Energy Network About 460 participants in total - · Zero-Emission Energy Network activities for information exchange on Zero-Emission Energy Research. - · Achievement Briefing Meeting of Collaborations in FY2023 (March 28, 2024, online). - · Promotions of other Workshops/Seminars of ZE Research. #### Organization for
Zero-Emission Energy Research Project | | Status of Adoption
Publicly Solicited | | | | Status of Implementation | | | | | | | | | |------|--|------------------------|-------------------|------------------------------------|--|-------------------|---------------------------------|--|--------------------------------|---------------------------------|--|--------------------------------|---------------------------------| | FY | | | | | New | | | Continuing | | | Total | | | | | Number of
Applications | Number of
Adoptions | Adoption
Ratio | International
Joint
Research | Number of
Publicly
Solicited
Projects | Research
Theme | International
Joint Research | Number of
Publicly
Solicited
Projects | Research Theme
Setting Type | International
Joint Research | Number of
Publicly
Solicited
Projects | Research Theme
Setting Type | International
Joint Research | | | | | | | | Setting Type | | | | | | | | | 2017 | 100 | 100 | 100% | 4 | 43 | 10 | 2 | 59 | 26 | 2 | 102 | 36 | 4 | | 2018 | 98 | 98 | 100% | 5 | 40 | 13 | 2 | 58 | 25 | 3 | 98 | 38 | 5 | | 2019 | 107 | 107 | 100% | 8 | 53 | 15 | 5 | 54 | 23 | 3 | 107 | 38 | 8 | | 2020 | 118 | 116 | 98% | 9 | 54 | 15 | 3 | 62 | 26 | 6 | 116 | 41 | 9 | | 2021 | 105 | 105 | 100% | 6 | 35 | 13 | 2 | 70 | 90 | 4 | 105 | 43 | 6 | | 2022 | 110 | 110 | 100% | 9 | 37 | 14 | 4 | 73 | 28 | 5 | 110 | 42 | 9 | | 2023 | 94 | 94 | 100% | 4 | 29 | 11 | 2 | 65 | 29 | 2 | 94 | 40 | 4 | #### **Bilateral Collaboration Research Program** (National Institutes of Natural Sciences) Leader: Prof. Kazunobu Nagasaki Project Period : FY2004 - The Bilateral collaboration research program promotes joint research bilaterally between National Institute for Fusion Science (NIFS), and the research institutes or research centers of universities that have a unique facility for nuclear fusion research. Under this collaboration scheme, the facilities are open to researchers throughout Japan as a joint-use program of NIFS. Our research subject under this program is to investigate experimentally and theoretically the transport and stability control through advanced helical-field control in the Heliotron J device. # Grant-in-Aid for Scientific Research (S) in Ministry of Education, Culture, Sports, Science and Technology (MEXT) Research area: Science and Engineering (Interdisciplinary Science and Engineering) Research project: Development of valley-spin quantum photonics in artificial hetero-structures Project Leader : Prof. Kazunari Matsuda Project Period : FY2020 - FY2024 In the atomically thin materials, the strong coupling of valley and spin degree of freedom induces novel physical degree of freedom as "valley-spin". Recently, we found the new route for valley-spin quantum optics through the series of studies by quantum control of valley-spin states. Thus, we would like to develop the new field of valley-spin quantum photonics providing the great impact on the optical and material science research. Moreover, we extend these fundamental studies to application of valley-spin quantum photonics. # Grant-in-Aid for Scientific Research (S) in Ministry of Education, Culture, Sports, Science and Technology (MEXT) Research area: Science and Engineering Research project: Establishing a scientific foundation for harnessing quantum thermo-optical properties of nanomaterials for advanced energy conversion Project Leader : Prof. Yuhei Miyauchi Project Period : FY2024 - FY2028 We have previously shown that carbon nanotubes (CNTs) possess a distinctive quantum thermo-optical property, wherein they convert high temperature thermal energy into narrowband near-infrared light, and have been conducting basic research to apply this property to highly efficient thermophotovoltaic power generation from both sunlight and high-temperature heat sources. In this project, we will overcome the conventional limitations in the heat resistance of CNTs and related nanomaterials and elucidate previously uncharted thermo-optical properties of nanomaterials at very high temperatures. This will provide a scientific foundation for harnessing the quantum properties of nanomaterials in energy science and technology of heat and light, which require operation in high temperature environments. # Grant-in-Aid for Transformative Research Areas (A) in Ministry of Education, Culture, Sports, Science and Technology (MEXT) Research project: Development of valley-spin quantum photonics in artificial hetero-structures Project Leader : Prof. Kazunari Matsuda Project Period : FY2021 - FY2025 In the project of "2.5 dimensional (2.5D) material science" lead by Prof. H. Ago (Kyushu University), we will develop the novel analytical methods and techniques for revealing intriguing structures and electronic properties in 2.5D materials and support the science of 2.5D materials. We provide the advanced analytical methods and techniques for the material fabrication including its assemblies and device application from its novel functionalities and play the important roles of analytical science in 2.5 dimensional (2.5D) materials. #### Fusion Oriented REsearch for disruptive Science and Technology (FOREST), Japan Science and Technology Agency (JST) # Research project: Development of quantum electrodynamics (QED) in semiconducting moiré superlattice Project Leader: Assistant Prof. Keisuke Shinokita Project Period: FY2022 - FY2024 Quantum electrodynamics (QED) plays an essential role in controlling the quantum state of matter by light and in quantum information processing. We are developing QED in a giant quantum two-level system called a moiré superstructure and exploring a new era of QED (moiré QED). The emergent quantum optical phenomena beyond conventional cavity QED can be expected to be a breakthrough in the next generation of quantum information processing. #### Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Japan Science and Technology Agency (JST) # Research project: Innovations in solar energy utilization through nanosystem control Project Leader: Junior Associate Prof. Taishi Nishihara Project Period : FY2023 - FY2025 Fundamental technological innovation in the use of sunlight is essential for a sustainable society. Conversion of broadband sunlight into monochromatic light would enhance its usefulness. Our research aims to scientifically pioneer energy conversion systems with low heat generation using nanomaterials such as carbon nanotubes, and to realize highly efficient spectral conversion of sunlight by macroscopically manifesting the phenomenon of "high temperature non-equilibrium thermal radiation". #### Measures against AIDs Japan Agency for Medical Research and Development (AMED) Research project: On the basis of understanding of the particle formation of HIV with Gag protein from a structural viewpoint, the measures against AIDs will be developed. Particularly, in-cell NMR method will be applied for the elucidation of structure, interaction and function of Gag in living human cells. Sub-theme Leader : Prof. Masato Katahira Project Period: FY2022 - FY2024 #### Quantum-Leap Program (Q-LEAP) Japan Science and Technology Agency (JST) Research area: Next Generation Laser Research Title: Development of Basic Technology for High Repetition Rate Attosecond Light Source Driven by MIR-Free Electron Laser Project Leader: Ryoichi Hajima (National Institutes for Quantum and Radiological Science and Technology) Responsible Researcher: Hideaki Ohgaki Period: FY2018 - FY2027 A free electron laser (FEL), which is generated from a relativistic electron beam, has wide tunable wavelength in Mid-infrared (MIR) with a high average power and high repetition rate. Therefore, MIR-FEL driven by a superconducting accelerator is suitable for a high-order harmonic generation (HHG) of 1 keV or more with high repetition of MHz. The HHG driven by MIR-FEL can be an alternative technology to the HHG generated by an existing solid-state laser. In this project, key technologies to realize the high repetition rate (>10 MHz) and high photon energy (>1 keV) HHG based attosecond laser will be developed by using an existing MIR-FEL facility in Institute of Advanced Energy. Schematic drawing of MIR-FEL based attosecond HHG laser #### Center for the Promotion of Interdisciplinary Education and Research, Kyoto University #### Research Unit for Smart Energy Management Leader: Prof. Yasuo Okabe (Academic Center for Computing and Media Studies) Leader in IAE : Prof. Toshiyuki Nohira Project Period : FY2016 - FY2025 This research unit aims to enhance the interdisciplinary R&D on Smart Energy Management by developing and deepening the various results obtained in Graduate School of Engineering, Graduate School of Energy Science, Institute of Advanced Energy, Graduate School of Economics, Graduate School of Informatics, and Academic Center for Computing and Media Studies, Kyoto University. The unit especially focuses on the fusion of current communication network technology and information processing technology. The unit will also conduct cooperation research projects with industry, government, schools. #### Research Unit for Non-linear/Non-equilibrium Plasma Science Research Leader: Prof. Hitoshi Tanaka (Professor, Graduate School of Energy Science) Leader in IAE : Prof. Kazunobu Nagasaki Project Period: FY2020 - FY2025 Kyoto University has a long history and achievement of diverse plasma research. In this unit, targeting various phenomena dominated by non-linear and non-equilibrium nature on a wide range of spatiotemporal scales in fusion plasma, light-quanta plasma, fundamental / applied plasma, cosmic/astrophysical plasma, we develop research activities to build the academic foundation of plasma as a complex system complete of complexity and
diversity, and to explore applied researches, by sharing a wide range of knowledge and findings through active collaboration and cooperation with researches in different fields, such as material science, life and biological science, mathematical science, and information / computational science, etc., in which similar processes play an essential role in the phenomena of concern. Through such activities, we explore the new research approach and methodology for realizing high-performance and high-functionality plasmas carrying the next generation and contributing to developing human resources who will lead them. #### Kyoto University Research Coordination Alliance, Research Units for Exploring Future Horizons Under the Kyoto University Research Coordination Alliance, 4 projects are ongoing as the organization "research unit", where IAE is involved in 2 projects. Leader: Prof. Fumiharu Mieno (Center for Southeast Asian Studies) Leader in IAE : Prof. Hideaki Ohgaki Project Period : FY2020 – FY2024 In this program, 12 departments collaborate to establish a new domain "Data Science-based comprehensive area study" based on the fusion of interdisciplinary area studies and informatics. The study area will be the Asia-Pacific region, and the main areas of interest will be simulations, risk assessments, and evaluations of policy related to political, economic, and social design in those region. All participants share the viewpoint of the combination of informatics and quantitative evaluation, and conduct research by comparing different disciplines and issues between different countries. #### Unit for Development of Sustainable Human Society Leader: Prof. Takeshi Hasegawa (Institute for Chemical Research) Project Period: FY2020 - FY2024 The "Research Units for Exploring Future Horizons" called the 2nd phase program, and our proposal based on the former Unit for Development of Global Sustainability was granted. Now 8 departments adding the Academic Center for Computing and Media Studies plan to pursue sustainability study. Human sustainability goals (SDGs) with material energy circulation system and infrastructure, resilient social system will be developed and their deployment methodology will be studied. The 17 SDGs are short term targets and involves various conflicts among them. Our study will reveal the ultimate solution for long term survival of human. ## **Research Facilities** Laboratory for Energy Nano-science (IAE, Bldg. N-1) Laboratory for Photon and Charged Particle Research (IAE, Bldg. N-2) Plasma Physics Laboratory (IAE, Bldg. N-3) Uji Campus Main Bldg. (W wing) Center for Advanced Science and Innovation IAE, Bldg. S-3 Plasma Physics Laboratory (IAE, Bldg. N-3) Uji Campus Main Bldg. (M wing) IAE, Bldg. S-1 IAE, Bldg. S-2 The Institute of Advanced Energy conducts research at several buildings, including the main building on the Uji Campus. Plasma Physics Laboratory (IAE, Bldg. N-4) Center for Advanced Science and Innovation IAE, Bldg. S-3 Uji Research Bldg. Uji Obaku Plaza IAE, Machine shop ## **Research Facilities** ### Magnetic Confinement Plasma Device Heliotron J One of the objectives of the Heliotron J project is to explore the confinement optimization of the "helical-axis heliotron" configuration which is original to Kyoto University in its design concept, in order to develop the advanced and high-performance fusion reactor. Heliotron J started its plasma operation in 2000, and continues the improvement of performance as a unique fusion plasma experiment device. (IAE, Bldg. N-4) ## Mid-infrared Free Electron Laser Facility KU-FEL KU-FEL is a tunable MIR laser (3.4 \sim 26 μ m) which is generated by a relativistic electron beam interacted with synchrotron radiation in the periodic magnetic field. Researches on energy materials by using high peak power MIR-FEL have been conducted by cooperation researchers. (IAE, Bldg. N-2) #### **NMR Machines** NMR machines, an 800 MHz machine linked with liquid chromatography and mass spectrometer and two 600 MHz machines equipped with the ultra high sensitivity probe, are operated to develop the way to extract the energy and valuable materials from biomass and biomolecules. (IAE, Bldg. S-2) (IAE, Bldg. S-1) # Multi-Scale Testing and Evaluation Research Facility MUSTER Shared Research Facility can evaluate chemical composition, structural composition, strength properties, environmental properties, of advanced energy materials, and is equipped with advanced equipment such as FETEM, FE-SEM, FE-EPMA and high temperature X-ray diffraction systems, etc. (IAE, Bldg. N-1, N-2) #### **Advanced Energy Conversion Experiment** For the evaluation of heat flux of plasma facing components and high temperature blanket, a 950°C LiPb liquid metal loop and compact fusion neutron source are developed. Study on interaction between material and energetic particles for the energy conversion components with advanced materials and heat transfer media will be performed. (IAE, Bldg. S-1) ## Research Facilities for Energy Nanoscience Analytical instruments for investigation of the energetic function of nanocomposites and biomaterials are provided. These involve scanning probe microscopes, a tomic force (IAE, Main Bldg.) microscopy, fluorescence microscope, CD spectrometer, ultraviolet and visible spectrophotometers, a fluorescence spectrometer, iso-thermal titration calorimetry, differential scanning calorimetry, MALDI-TOF mass spectrometer, ESI mass spectrometer, FT-IR spectrometer. ## Functional Analytical Systems for the Generation of Catalytic Materials Instruments are set up to purify, analyze chemical compositions and structures, and to evaluate functions of various biomolecules, organic and inorganic molecules. These include 300 MHz NMR, a protein purification chromatography system, and a time-resolved fluorescence spectrometer. (IAE, Main Bldg.) ## **Education and Social Activities** #### Education Since being simultaneously launched with the Graduate School of Energy Science, Kyoto University in 1996, each laboratory in the Institute has participated in training graduate students via a cooperative course. The steady flow of research achievements has been attracting more and more students to our Institute. Both the recent increase in the number of Ph.D. students and the higher percentage of foreign students in our student body attest to the fact we are becoming an international institute. Additionally, many of our graduate students are attracted to the Institute's unparalleled quality of advanced equipment and the diversity of our staff engaging in advanced research. We hold briefing sessions for prospective graduate students in conjunction with Graduate School, so that potential students are familiar with issues such as our enrollment policy and selection procedure. The notable activities of our Institute include briefing sessions of our graduate school, which have been held concurrently with our open seminars, to disseminate our activities to a broad audience. These efforts have increased the student body at our Institute to 116 in FY2023, which includes 46 Ph.D. students (29 from foreign countries). We are leveraging both the Institute's Research Fellow (RF) system to increase opportunities for graduate students to network with other research institutes in Japan and abroad as well as to encourage them to present at research meetings in and out of Japan. To broaden their international perspective, many of our graduate students have participated and/ or presented at international conferences. Attending international conferences plays a major role in our training activities at the Institute. We are also making efforts to expand the professional careers of our graduates, and numerous graduates have found employment at research institutes in Japan and abroad. We also strive to include the general public in our activities via public lectures and an open campus policy. Visitors are always welcome. We aim to contribute to a broad spectrum of our society, including the local public activities. Additionally, the latest information is disseminated through the Institute's website, annual reports and publicity activities of the University. Since 2003, we have held annual public lectures on our campus and in the city of Kyoto to facilitate participation from the general public. We also actively participate in Kyoto University Research Institutes' Symposium to impart our achievements. Moreover, efforts have been made to develop innovative and creative initiatives of the advanced energy fields and training activities in the nuclear power field. We are dedicated to disseminating and practically applying intellectual properties through activities such as i) collaborating with industry, government, and academia, ii) holding joint symposia, iii) actively conducting collaborative research and engaging in commissioned research, iv) providing technical guidance to industry, and v) implementing systems for the effective collaboration of industry, government, and academia. Results from these initiatives will be used in a broad array of fields to further our contributions in the international arena and to strengthen our international collaborative network. #### International Symposium of Advanced Energy Science The 14th International Symposium of the Institute of Advanced Energy was held for three days from August 30 to September 1, 2023, in collaboration with the Joint Usage/Collaborative Research Centers. Under the theme of "Research Activities on Zero-Emission Energy Network," the symposium aimed to further promote research activities in the zero-emission energy research network with the hub of the Joint Usage/Collaborative Research Centers. This symposium was the first full-scale face-to-face meeting after Covid-19 pandemic, and the oral sessions were simultaneously streamed on YouTube in consideration of participants from distant locations. As with previous international symposiums, many researchers
attended, with 252 participants in the oral sessions and 61 in the parallel seminars. #### **Public Lectures** "The 28th Public Lecture of the Institute of Advanced Energy" was held at Kihada Hall of Obaku Plaza in the Uji campus, in conjunction with "Uji Open Campus 2023". This is an annual series of lectures in which selected professors of the Institute present their current research to the audiences in general public, such as office workers, undergraduate and graduate students in different fields, junior high school and high school students. In this Public Lecture, Prof. Takashi Morii first gave a lecture for junior high school and high school students entitled "What's Really Interesting is Still Ahead. This continued with lectures by Associate Professor Takashi Nagata on "Structural Bioscience Approach to Biomass Utilization: Possibilities and Challenges" and by Associate Professor Juro Yagi on "Nuclear Fusion and Liquid Metals - Using Metals as they are Melted Down". The lectures attracted 100 participants, and junior high school and high school students engaged in an active question and answer session. Participants wrote in their questionnaires, "It was good to know about liquid metals.", "Thank you very much for your valuable and cutting-edge talk.". Many comments made it a meaningful event. ## **International Activities** #### Academic Collaboration Agreements | Date signed | Name of Institute | Country | |----------------|---|-------------------| | Sep. 29, 1995 | Fusion Technology Institute, University of Wisconsin-Madison | U.S.A. | | Jun. 3, 1996 | Institute of High Energy Physics, Chinese Academy of Sciences | China | | Jun. 4, 1996 | China Institute of Atomic Energy | China | | Nov. 19, 1996 | Center for Beam Physics, Lawrence Berkeley National Laboratory, University of California | U.S.A. | | Nov. 20, 1996 | Free Electron Laser Center, Hansen Experimental Physics Laboratory, Stanford University | U.S.A. | | Dec. 12, 1996 | Department of Physics, Flinders University of South Australia | Australia | | Aug. 10, 1997 | Plasma Research Laboratory, Australian National University | Australia | | Feb. 6, 1998 | Torsatron/Stellarator Laboratory, University of Wisconsin-Madison | U.S.A. | | May. 11, 1998 | National Science Center 'Kharkiv Institute of Physics and Technology' | Ukraine | | Aug. 1, 1998 | Department of Materials Science and Chemical Engineering, Politecnico di Torino | Italy | | May. 7, 1999 | Industry-University Cooperation Section, Dong-eul University | Republic of Korea | | July. 24, 2000 | Dong-eul University (Engineering school) | Republic of Korea | | Sep. 10, 2000 | Korea Basic Science Institute | Republic of Korea | | Jan. 9, 2001 | Graduate School of Physics, University of Sydney | Australia | | Jan. 25, 2001 | Slovak University of Technology in Bratislava (Faculty of Electrical Engineering and Information Technology) | Slovak Republic | | Feb. 5, 2001 | Rajamangala University of Technology Thankyaburi | Thailand | | May. 16, 2001 | Spanish National Research Centre for Energy, Environment and Technology, CIEMAT | Spain | | July. 24, 2001 | University of Erlangen-Nuremberg (Department of Material Science, School of Engineering) | Germany | | Nov. 28, 2006 | Research Institute of Industrial Science and Technology, Pukyong National University School of Engineering | Republic of Korea | | Oct. 19, 2009 | Joint Graduate School of Energy and Environment | Thailand | | May.18, 2010 | City University of New York, Energy Institute | U.S.A. | | Apr. 12, 2012 | Nano and Energy Center, Vietnam National University, Hanoi | Vietnam | | Jan. 23, 2013 | Fusion Plasma Transport Research Center, Korea Advanced Institute of Science and Technology | Republic of Korea | | Sep. 18, 2014 | Center for Advanced Material & Energy Sciences, University Brunei Darussalam | Brunei | | Oct. 6, 2014 | Horla Hulubei National Institute of Physics and Nuclear engineering | Romania | | Dec. 3, 2014 | Plasma Fusion Stability and Confinement Research Center, Ulsan National Institute of Science and Technology | Republic of Korea | | Jan. 8, 2019 | Max- Planck-Institut fuer Plasmaphylsk | Germany | | Feb. 15, 2019 | The Institute of Fusion Science, Southwest Jiaotong University | China | | Jun. 19, 2019 | Faculty of Engineering, National University of Laos | Lao | | Oct. 21, 2019 | Center for Fusion Science, Southwestern Institute of Physics | China | | Oct. 30, 2019 | International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics (IFPP), Huazhong University of Science and Technology | China | | Jun. 8, 2022 | Faculty of Science, Assiut University | Egypt | | Sep. 25, 2023 | Department of Applied Physics and Science Education, Eindhoven University of Technology | Netherlands | | Jan. 22, 2024 | Institute for Carbon Neutrality, Zhejiang University | China | | Jan. 22. 2024 | The Institute of Energy and Sustainable Development, Zhejlang University of Technology | China | | Jan. 23. 2024 | The Institute of Sustainable Energy, Universiti Tenaga Nasional | Malaysia. | | Feb. 9. 2024 | Thailand Institute of Nuclear Technology | Thailand | | Feb. 28. 2024 | The University of Jordan, The Hamdi Mango Center for Scientific Research | Jordan | | Mar. 22. 2024 | Korea Institute of Fusion Energy | Korea | ## The number of visitors and foreign #### International Exchange Promotion: ASEAN-JAPAN #### Leader: Prof. Hideaki Ohgaki International exchange promotion activities among ASEAN countries are started by the 21st century COE program from 2006 and the 8th International Conference on Sustainable Energy and Environment (SEE2022 Conference) was held in November organized by Graduate School of Energy and Environment (JGSEE) in Thailand. In Thailand we have also been having the Eco-Energy and Materials Science and Engineering Symposium (EMSES) in almost every year in cooperation with Rajamangala University of Technology Thanyaburi since 2001. We will organize 16th EMSES in Kyoto University in 2024. These international activities have been appreciated by many ASEAN universities, research institute, Japanese government and UNESCO. In this connection we have cooperated with UNESCO COMPETENCE program from 2009 and established the renewable energy course in 2011. As the extension of this project, we have started the ODA-UNESCO Assist program on Energy for Sustainable Development in Asia from 2011 to 2014 (http://www.iae. kyoto-u.ac.jp/quantum/ODA-UNESCO/). In 2017, UNESCO selected Kyoto University as "UNESCO chair" in the field of water, energy, and disaster prevention under the collaborative activity with Graduate School of Advanced Integrated Studies in Human Survivability, WENDI (http://wendi.kyoto-u.ac.jp/). In 2015, the Japan ASEAN Science and Technology Innovation Platform (JASTIP) has been adopted in JST SICORP and we have been promoting the international collaboration research between Japan and ASEAN. JASTIP also promotes the human resource development for Science Technology and Innovation Coordination supported by the Toyota Foundation since 2023 in collaboration with Ministry of Industry, Science, Technology & Innovation, Cambodia, and National Science and Technology Development Agency, Thailand. In education activity, based on the MOU between Kyoto University and AUN which was initiated IAE activities, the AUN - KU Student Mobility Program towards Human Security Development (HSD) has been selected to accelerate internationalization of university in 2012. So far many sending/invitation programs, collaboration research have been promoted under the support of JST, JSPS, Kyoto University. Group photo of Opening Ceremony in MISTI, Cambodia n students (2023) #### The Toyota Foundation: Initiative Program for Fiscal 2022 Research project: Mutual Learning of Science Technology Innovation Coordination to Bridge Different Countries and Sectors in Cambodia, Thailand, and Japan towards Capacity Development Program and Policy Recommendations Project Leader : Prof. Hideaki Ohgaki Project Period : FY2023 - FY2024 https://toyotafound.my.salesforce-sites.com/psearch/JoseiDetail?name=D22-PI-0003 Targeted at bio-circular green economy and sustainable development, this ASEAN-Japan team aims to co-create an original training system of "Science, Technology & Innovation (STI) Coordination" between government, academic, private sectors and local community. Currently, connections between different sectors are limited because of lacking well-trained coordinators and their training system. Therefore, it is necessary to develop the training system to cultivate more coordinators with professional knowledge and communication skills, and to facilitate dialogue among different stakeholders. In this project, members from different sectors in Cambodia, Thailand, and Japan will deepen their common understanding of good practices and problems in STI through interactive site visits, internships, and workshops. Project scheme ## Data ## **Faculty Member** 2023 ## **Adjunct Member** 2023 Students May, 2023 **Budget** FY2022 [unit: 1 million yen] ## **Research Presentations** The number of applicants to the collaboration program of the Laboratory for Complex Energy Processes | Category | 2023 | |---|------| | A1: Division of International and Industrial Partnership | 4 | | A2: Division of Soft Energy Science Research | 2 | | A3: Section of promotion for international collaborative research | | | Total | | The number of applicants to the collaboration program of Joint Usage/Research Center on Zero-Emission Energy | Category | 2023 | |---------------------------|------| | (A) Core research subject | 40 | | (B) Research subject | 44 | | (C) Facility usage | 8 | | (D) Workshop | 2 | | Total | 94 | ## **Admissions** #### Procedure for acceptance
of graduate students at IAE There are twelve laboratories that accept students at the IAE, we focus on research that aims towards the next generation of advanced energy among a wide range of academic fields spanning physic, chemistry, biology and engineering, as well as education that trains and produces students capable of originality and international activity. In order to study at the IAE, it is possible to either be admitted into an affiliated laboratory of the Graduate School of Energy Science, or to be enrolled as a research student. IAE is divided into different Departments. To join a lab in a given department, a student must come to an agreement with the lab supervisor. If that supervisor does not hold the title of professor, then the student must also receive additional permission from a IAE professor based on the advice of the lab supervisor. It is recommended that Applicants consult the lab supervisor prior to taking the entrance examination. #### Application process - 1. Select desired lab - Contact supervisor and inquire about possibility of being accepted as a student. Interview, if necessary. - 3. Supervisor notifies applicant of result of (2). - Prospective student takes Graduate School of Energy Science, Kyoto University entrance examination. - *Master program may not require the prior agreement from the lab. supervisor. Please confirm the entrance examination information of the Graduate School of Energy Science for details. For information on application procedures and examination dates, please contact the Graduate School of Energy Science, Kyoto University. Graduate School of Energy Science, Kyoto University Admissions: http://www.energy.kyoto-u.ac.jp/en/admission/ General affairs branch Contact Us: http://www.energy.kyoto-u.ac.jp/en/contact-us/ #### Procedure for acceptance of research students at IAE Apart from enrolling as a graduate student, it is possible to participate in research activities by enrolling as a research student at the IAE. If you wish to become a research student, please contact your prospective supervisor under whom want to study and obtain a consent of acceptance. After the appointed proceedings have been completed, you will become a research student. Please note that degrees are not given to research students. For more details, please contact your prospective supervisor. #### [Contact Information] Institute of Advanced Energy, Kyoto University Contact Us: https://www.iae.kyoto-u.ac.jp/new-iae/en/contact/index.html ## **Access to Kyoto University** Kyoto University is located in the historic city of Kyoto, which flourished as the nation's capital for over a thousand years until that status was transferred to Tokyo. ## Location in Japan ## Location of three campuses in Kyoto #### **▶INFORMATION** Gokasho, Uji, Kyoto 611-0011 Japan Phone.+81-774-38-3400 FAX.+81-774-38-3411 e-mail:office@iae.kyoto-u.ac.jp https://www.iae.kyoto-u.ac.jp/new-iae/en/