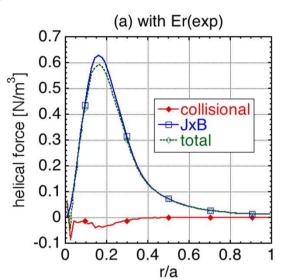
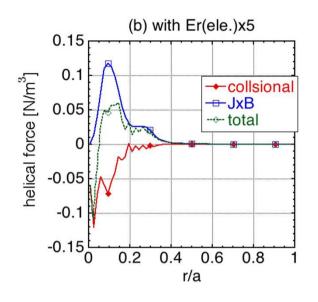
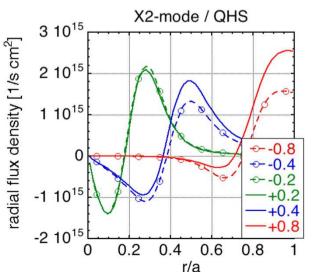


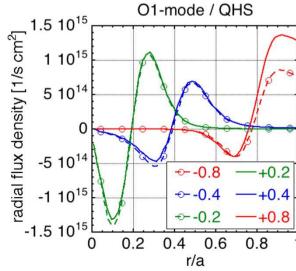
Study of toroidal flow generation by ECH in HSX plasma


Y. Yamamoto¹, S. Murakami¹, S.T.A. Kumar², J. N. Talmadge², K.M. Likin², D.T. Anderson²
Department of Nuclear Engineering, Kyoto University ¹
HSX Plasma Laboratory, University of Wisconsin-Madison ²



(i) Effect of Er




* r/a= \pm 0.8, \pm 0.4, \pm 0.2 Minus : magnetic hill Plus: magnetic well

*This work was supported by JSPS Core-to-Core Program Advanced Research Networks (PLADyS) and Japan/U.S. Cooperation in Fusion Research and Development.

- ✓ Strong ExB flow suppresses electrons' trapped orbit.
- ✓ Strong Er makes weak the JxB force, and the JxB and collisional forces are comparable.
- ✓ With the experimental Er, the collisional force is ignorable.

(ii) Polarization & off-axis Effect

- ✓ X-mode ECH tends to generate larger radial flux than O-mode ECH because X-mode generates more trapped particles.
- ✓ The radial flux in X-mode case is more subject to the heating position because O-mode generates more passing particles and they will spread over the flux surface after their resonance.