

"Community Smart Grid: Integrating Renewable Energy with Green Technologies"

Worajit Setthapun Chiang Mai Rajabhat University, Thailand

Outline

- Concept of Smart Grid
 - Class Questions
- Examples of Smart Grid Systems
 - Case Study Jeju Island
- Community Smart Grid RE & Green Technologies
 - Case Study: Chiang Mai World Green City
 - DC Microgrid
 - Integrating Energy Infrastructure with Green City Components
- Smart Homes
- Conclusion

Class Questions

- What is a grid?
- What is a electrical grid?
- What is a smart grid?
- Why do we need smart grid?
- What are the component of smart grid?

- Distributed Generations
 - What are the generation profiles of renewable energy?
 - What are the load profiles for home, offices, factories, etc?
- What are the role of energy storage and EVs?

Smart Grid Example

Smart Grid Component

EXAMPLES OF SMART GRID SYSTEMS JEJU ISLAND, KOREA

Jeju Island

Population: 604,670

Area: 1,848 km²

Gapado - Carbon Free Island

Korea's Vision

Build the world's best nationwide Smart Electricity Grid

→ Realize a low carbon, green growth society

Opportunity Elements

Highly Populated Land

World's Best Broadband Internet Networks

Single Power Transmission & Distribution Company

Vision of Korea's Smart Grid

Vision and Goals of Korea's Smart Grid

Pave the way for low carbon, green growth through a Smart Grid

Build a nationwide Smart Grid

Build a Smart Grid across metropolitan areas

2030

Build a Smart Grid Test-bed

2020

2012

Smart Power Grid	- Build a monitoring & control system of the power grid - Build a failure prediction & automatic recovery system of the power grid	
Smart Place	- Distribute nationwide smart meters - Build an automated energy management system	
Smart Transportation	- Build a nationwide charging infrastructure - Build an ICT-based electric vehicle operating system	
Smart Renewable	- Create a large-scale renewable energy generation complex - Develop large capacity energy storage devices	
Smart Electricity Service	- Develop a various pricing system - Develop consumers' electricity trading system	

adicet Alternative Energy No Fossil by 2030

Renewable Energy

- 100% Electricity usage by RE
 - Development of 1GW Offshore wind business by 2019 → 15%
 - Development of 2 GW Offshore wind business by 2030 → 100%
 - Onshore 350 MW; Solar PV 100 MW, etc.

Electrical Vehicle

- 100% Replacement of Fossil Fuel Cars to Electrical Vehicle by 2030
 - Public by 2017 → 10% (29,000 vehicles)
 - Public transportation by 2020 →30% (94,000 vehicles)
 - Commercial Vehicles by 2030 → 100% (371,000 vehicles)

Smart Grid

- Smart Grid City all around Jeju
 - Smart Grid Pilot Project in 2014
 - Spread Smart Grid Business by 2017
 - Smart Grid City around all Jeju by 2020

Vision of Jeju Smart City

Jeju Smart Grid Test-Bed

- 1st Stage Test-bed Infrastructure (Dec 2009– May 2011)
 - Energy Monitoring Service (200 house/buildings)
 - Energy Efficiency Service (+800 house/buildings)

- 2nd Stage Operation (June 2011 May 2013)
 - Real-time Pricing, DR, Power Trading, etc.
 (+Buildings/Industrial Plants)
 - Business Model Implementation (Smart Grid City)
- Area: 186 km² (1/10 of Jeju)
- Population: 15,500 (6,250 Homes)

Budget 230M US\$ (Government 70M US\$, Private Sector 160 M US\$)

	First Stage (2010~2012)	Second Stage (2012~2020)	Third Stage (2021~2030)
Implementation Directions by Phase	'Construction and operation of the Smart Grid Test-bed' (Technical validation)	'Expansion into metropolitan areas' (Intelligent consumers)	'Completion of a nationwide power grid' (Intelligent power grid)
Smart Power Grid	Real-time power grid monitoring Digital power transmission Operate optimal distribution system	Predict possible failures in power grids Connect the power system with that of other countries Connect the power delivery system with distributed generation and power storage devices	- Self-recovery of power grids - Operate an integrated energy Smart Grid
Smart Consumer	Power management of intelligent homes Various choices for consumers including rates	- Smart power management of buildings/factories - Encourage consumers' power production	- Zero energy homes/buildings
Smart Transportation	Build & test electric vehicle charging facilities Operate electric vehicles as a pilot project	- Expand electric vehicle charging facilities across the nation - Effective maintenance and management of electric vehicles	 Make the presence of charging facilities commonly available Diversify charging methods Utilize portable power storage devices
Smart Renewable	-Operate microgrids by connecting distributed generation, power storage devices and electric vehicles - Expanded utilization of power storage devices and distributed generation	 Optimal operation of the power system with microgrids Expand the application of power storage devices 	- Make renewable energy universally available
Smart Electricity Service	- Consumers' choice of electricity rates - Consumers' selling of renewable energy	- Promote transactions of electrical power derivatives - Implement real-time pricing system nationwide - Emergence of voluntary market participants http://w	- Promote various types of electrical power transactions - Promote convergence for the market of electricity-based sectors - Lead the power market in Northeast

Field trial in Jeju Island

DR

What we have done? Technology Verification

Smart Metering AMI Measured Data Management Energy Monitoring & Control **EMS** Energy Usage Optimization Normal Charging & Quick Charging **EVCI** Communications Renewables (Wind Power, PV etc.) Interconnection Microgrids Renewable Power Output Smoothing ESS Peak Shaving & Load Leveling Electronic Sensors and IED Intelligent Device Intelligent T&D Devices Reliability Based DR

Market Based DR

5 Areas of the Jeju Test-Bed

Smart Renewables

Smart Renewables is new technology that improve the quality of power from renewable energy sources and it realizes stable interconnection of distributed resources with power grid

Showcase – New & Renewable Energy

Current Generating Plant in Jeju

Energy Storage System

Renewables Power Output Smoothing Peak Shaving & Load Leveling

Smart Transportation

Smart Transportation is to build infrastructure for electric vehicle which is the next generation transportation

Smart Home

Business Model Verification

9 Business Models developed and verified

Consumer Domain

- Electric Retail Service
- Demand Response
- Retail Market Service
- Virtual Power Plant Service

Transportation Domain

- EV Charging Service
- Mobile Charging Service
- EV Rental Service

Other Domain

- Energy Usage Consulting Service
- Load Leveling & Quality Improvement

From: International Smart Grid Action Network

Conclusion - Driving Force

- Strong Policy for Smart Grid with Challenging Road
 Map
- International Smart Grid Action Network (ISGAN)
- Korean Smart Grid Association (KSGA)
- Smart Grid → Business
- 150 Companies
 - Electricity, heavy electric machines, IT, electronics, automobile, energy storage devices
 - Korean Electric Power Corporation
 - Samsung, LG, Hyundai, LS, SK Telecom, Korea Hydro & Nuclear Power, etc.

COMMUNITY SMART GRID

CASE STUDY:

CHIANG MAI WORLD GREEN CITY CHIANG MAI, THAILAND

Chiang Mai Rajabhat University, Thailand

Asian Development College for Community Economy and Technology Maerim Campus, Chiang Mai, Thailand

- 30 km from Chiang Mai City
- 1 hr flight from Bangkok

adiCET, CMRU

- Academic R&D Training institution for the well-being of the community by using green technologies.
- adiCET campus is on Chiang Mai World Green City (CMGC).
- Smart Community Model Community uses 100% renewable energy.

Research Concept: Sufficiency Economy → Bioenergy Cycle

Goal

"Smart Grid Infrastructure for Green City Development"

Chiang Mai World Green City: Real Living Learning Park

Renewable Energy & Green Technologies

	Energy	Construction/Building	Agriculture
1.	PV 25.5 kW DC Microgrid	1. Road from waste plastic bag	1. Smart Farm
2.	PV 25 kW AC Microgrid	2. Energy efficient house EPS x1	2. Low Carbon Agriculture
3.	PV 702 kW Community Solar farm	3. Energy efficient conference room	3. Smart Watering System
4.	PV Rooftop 3.5 kW Grid Connected	x3 4. Energy efficient classroom x2	4. Organic fertilizer from biogas system
5.	PV Bus stop 2.64 kW	5. Low cost house x2	5. Energy Crop
	Stand Alone & EV & Charging Station	6. Coffee Shop	
6.	PV Pumping 3 kW Stand Alone	7. Minimart	Environment
7.	Biodiesel Generation 40 kW	8. Restaurant	Green City Carbon Footprint
8.	biodieser Generation 40 kw	9. Residential housing x 16	·
	Riomass Gasifier 20 kW	J. Residential flousing X 10	Calculation
_	Biomass Gasifier 20 kW	10.DC Smart Home	2. Biomass waste management
9.	Charcoal/ Energy Efficient Stove	_	
_		_	2. Biomass waste management
9. 10.	Charcoal/ Energy Efficient Stove Biogas Fix Dome 16 m³ (~1.5 kW)	10.DC Smart Home	 Biomass waste management Water management
9. 10. 11.	Charcoal/ Energy Efficient Stove Biogas Fix Dome 16 m³ (~1.5 kW) Biogas Fix Dome 1 m³ x2	10.DC Smart Home Green Business	 Biomass waste management Water management Forest Conservation and land
9. 10. 11.	Charcoal/ Energy Efficient Stove Biogas Fix Dome 16 m³ (~1.5 kW)	10.DC Smart Home Green Business 1. Green Coffee Shop	 Biomass waste management Water management Forest Conservation and land

Smart Community – DC Smart Grid

Biomass Gasifier

Biomass Gasifier: electricity for base load Biochar/Charcoal: food, heat, soil conditioner

Energy from waste agriculture products "Solve open field burning"

Power Supply Controller

DC Smart Plug

Independent Learning

Learning Media

Website of Community Smart Grid

Thai/ English/ Chinese

Community Power Learning/Training Cente

Community Biogas System Map

Sharp Asian Solution Installation - 100 kW Rooftop PV

on 14 Public Buildings, 4 Water Pumping Station

Summary – adiCET

- Concept: Renewable Energy and Green Technology for Local Community
 - Integrate with Community Resources Ways of Living
 - Sufficiency Economy + Green Technologies (RE & EE)
 - Smart Grid as Infrastructure for Green Community Development
- Smart Community
 - Living/ learning/training center for student, researchers, and general public
 - Projects focus on appropriate technology and methods to solve real green city problems
 - Train problem solving skills relating to RE & Green Technology for local issues

DC MICROGRID

CASE STUDY:

SMART COMMUNITY, CWGC CHIANG MAI, THAILAND

adiCET Smart Grid Component

Smart Community – DC Smart Grid

Scope of DC Community

- Living Laboratory for community transition from AC → AC/DC → DC Community
- Evaluate Low Cost Low Voltage DC Community Power System at the Smart Community
 - Phase 1: Lightings 24 VDC/ 1 House 240 VDC
 - Phase 2: Household Appliances 260-297 VDC
- Modify/Testing Household Appliances for DC & AC usage
 - Lighting, Refrigerator, Air Conditioner, Water Heater, Television, Computer,
 Rice Cooker, Microwave, Washing Machine
- Evaluate appliances during operation, stability and safety
 - Full DC
 - Full AC
 - Mixed DC & AC

2nd Phase DC Microgrid

Mode	Central Battery Voltage Stage	Usage
Full	297 – 260 VDC	DC use directly from Central Battery bank
Battery Boosting	260 – 250 VDC	DC from Battery bank (260 VDC) & Booster (54 VDC)
Biodiesel Generator Start	250 – 242 VDC	Generator - Charge Battery Bank - Charge Booster Batteries If ran out of fuel, AC from Utility will convert to DC
Battery dead	Below 242 VDC	Automatically switch to AC

Note: Voltage range depends on Charger Specification, battery voltage range and electrical load device requirements.

Phase 2: Building Power Consumption

Monitoring DC Microgrid

Load Test: Modify Each Appliance

- LED lightings
- Refrigerator
- Water Heater
- Television
- Air Conditioner 9,000 btu
- Air Conditioner 13,000 btu
- Air Conditioner 18,000 btu

DC vs. AC

Energy Consumption Comparison

Issues to Overcome

System Issues

- Stability/Durability of components of the power supply when switching between DC and AC (capacitor, PLC)
- The online connectivity with university network
- Integrating Distributed Generations (voltage range Diesel Generator)

Nature Issues

- During the rain, the voltage fluctuates from the utility line which cause the Hybrid Microgrid system to be disrupted.
- Animals
- Human Issues

Demo-Site for Energy Hybrid Systems Community Smart Grid

Goal: Realtime - Smart Community Monitoring

Smart Community Database

Environmental

Recycle waste (kg)
Organic waste (kg)
Hazardous waste (kg)
The frequency of dumping waste (time)
Date/time

Food

Vegetable production (Kg)
Using fertilizer (Kg)
Another material in cultivation (Kg)
Consumption and sale of vegetable (Kg)/
Date/Time

Energy

Production (kwh)
Consumption (kw)
Raw material of biogas and charcoal production (kg)
Biogas and charcoal yield/consumption (kg)
Fuel consumption in transportation (L)
Date/fime

Economic

Expenses (Baht) Income (Baht) Date/Time

Building

Indoor/Outdoor temperature (° C) and humidity (%)
Outdoor solar intensity (W/m2) and wind velocity (m/s)
Water consumption (L) / Water flow rate average (L/min) and quality (Nephelometric Turbidity Units, pH, Coliform, BOD)
Particulate in the air (PM)
The frequency of price vertex (Time)

The frequency of using water (Time)

Date/Time

Instruments for Data Collection

THE START OF SMART GRID..... START WITH SMART HOME

Class Questions

- What is a smart home?
- What functions do you want your smart home to have?

- What are the groups of the functions?
- How can smart home support smart grid?

Group 1

- 1. Control for irrigation the land by app and sensors
- 2. Control the light time outside automatically
- 3. Charging the Electric car and motorcycles
- 4. Safe house by alarm System + Camera
- 5. Wifi Communication for manage household appliances like TV, air conditioner, plug, heating water, cleaning, machine, playing music
- 6. Make smart light flash when the package is on the way
- 7. Smart Parking of the car, washing cloths,
- 8. Preparing coffee by boiler, video, phone, computer printer, telephone
- 9. Audio and video application, internet
- 10. Fire detector/ Car lock

Group 3

- A home equipped with lighting, heating, and other systems and can be controlled by smart phones and computers to provide inhabitants with monitoring and control over the building functions
- b) Monitoring and controlling triggered events
 - i) Lighting, ii) Blinds, Doors
 - iii) HVAC/Air Conditioning
 - iv) Security
 - v) Feeding pets & watering plants
 - vi) Home Energy Meters
 - vii) Entertainment
 - viii) Preparing foods

Group 2

- Light turn on/off
- Appliances turn on/off in home
- Cooking food by facial expression
- Security System (Alarm go out locked)
- Energy Management
- Energy/other appliances- communication
- Waste collection/ Holidays, kids programs, etc.
- Communicate Scheduled programs
- Waste bin signals to collector

Group 4

- 1. Notice alarm for organizing our daily schedule
- 2. Setting condition for our mood booster
- 3. Spray different smell of perfumes
- 4. Draining system for collecting rainfall
- 5. Automatically feed pets
- 6. Scanning health with medical report
- 7. Checking our daily needs storage
- 8. Controls shelter to make the temperature
- Safety thief system (Sent the stranger picture when we are not in home/ automatically locking the doors and windows)
- 10. Leaving message for guests when we are not at home
- 11. Giving the news today
- 12. Automatically turn on vacuum machine when the smart home detects dirty and cutting grass machines
- 13. Turning on the electricity breaker when fire alarm on.

Smart Home

Smart Home

http://smarthomeenergy.co.uk/what-smart-home

Sensors/Automation

Samsung Smart Home

Samsung Smart Home

Samsung Smart Home Function

Visitor Identification

Monitoring and control

Intrusion Detection

(Buglar Intrusion Detection)

(Emerency alarm, IP camera activated)

(Resident notification via video)

Smart Home Examples

Grouping Smart Home Functions

MOST APPEALING SMART HOME SERVICES AND SOLUTIONS ACCORDING TO CONSUMERS

Source: GfK smart home study 2015, +7000 consumers surveyed in September and October 2015 in Brazil, China, Germany, Japan, South Korea, UK and US (China and Japan data not included in this graphic)

© GfK 2015

What we have discussed...

- Concept of Smart Grid
- Learn from Examples of Smart Grid Systems
 - Case Study Jeju Island
 - Business oriented
- Learn from Demonstration Sites
 - Case Study: Chiang Mai World Green City
 - Community Smart Grid (DC&AC) RE & Green Technologies
 - Integrating Energy Infrastructure with Green City Components
- Smart Home Functions

adicet

Conclusion 1

- Smart Grid: Efficient use of power by IT communications
 - Balance: Supply Demand
 - Monitor Control Optimize
- Jeju Island
 - Strong Policy
 - Collaboration with Private Sectors
 - Business Oriented
- Smart Community
 - Living/ learning/training center for student, researchers, and general public
 - Appropriate technology and methods to solve real green city problems
 - Train problem solving skills RE & Green Technology for local issues
 - Integrate with Community Resources Ways of Living
 - Sufficiency Economy + Green Technologies (RE & EE)
 - Smart Grid as Infrastructure for Green Community Development

adicet

Conclusion 2

- Obstacles ???
 - Renewable Energy Deployment (Investment, Market, Policy)
 - Poor grid infrastructure/ Lack Feeder (Utility, Policy)
 - Lack policy/ Lack understanding Integrated way forward
 - Market driven?
- Do you think smart grid is possible?
- Moving Forward
 - Appropriate Technology; Monitoring/Optimization
 - Integration with Social Development and Green Economic Development
 - Create awareness/ Share best practices/ Demonstrations Sites/ Community Implementation
 - Training General Public; Private Sectors; Policy Maker

Acknowledgments

- Ministry of Energy, Thailand
- APEC Secretariat
- Chiang Mai Rajabhat University
- Office of Naval Research, USA
- National Research Council of Thailand
- University of Phayao
- Uttaradit Rajabhat University
- ASEAN U.S. Science and Technology Fellowship

Thank you – Kob Khun Ka

Website: www.adicet.cmru.ac.th

Facebook: www.facebook.com/adicetfan

Email: worajit@cmru.ac.th

Phone: +6653-885871