Collaboration Programs

Inter-University Research Program (MEXT)

Research Project for Zero Emission Energy System

Zero-emission energy refers to energy that emits no or minimal harmful substances or greenhouse gases such as carbon dioxide. It also refers to advanced, environmentally friendly energy systems that minimize environmental impact and energy losses. Zero Emission energy is the key to solving global energy problems and environmental issues once and for all.

As a joint usage/research center for Zero Emission energy research certified by the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Institute of Advanced Energy (IAE) strives to meet the demands of the diverse energy-related research community and the international community regarding issues of energy, the environment, and resources. We pursue joint usage and joint research projects related to Zero Emission energy with researchers from around Japan, and strive to educate and foster innovative researchers who will continue with these efforts.

IAE is designated as a joint usage/research center for advancing Zero Emission energy research.

We will open new frontiers in Zero Emission energy by meeting the demands of the research community and pursuing joint usage and joint research projects.

  • Joint usage of large-scale specialized equipment and state-of-the-art research facilities
  • Interdisciplinary joint research and the international exchanges and talent it fosters
  • Publicizing the importance of the activities of the zero-emission energy research center and encouraging researchers in different fields to join our mission

Bilateral Collaboration Research Program (National Institutes of Natural Sciences)

Heliotron J is a plasma device designed to optimize the helical-axis heliotron configuration devised by Kyoto University researchers. Its physical design incorporates three elements: the concept of quasi-isomagnetic fields, the ability to control the bumpiness of the magnetic field, and a magnetic well that covers the entire confinement volume. These elements realize a high compatibility between particle confinement and MHD stability, which has been an obstacle in previous helical-axis heliotrons.

Since the initiation of plasma experiments in 2000, we have been steadily progressing towards demonstrating Heliotron J's high potential as a high-temperature plasma confinement system. We have improved our heating system and measuring equipment, generated high-temperature plasmas in regions with low collision rates (electron temperature of about 1 keV at the plasma center), and demonstrated good energy confinement (1.5 to 2 times greater than the ISS95 scaling value). Goals of the second mid-term plan for Heliotron J include (1) academic research of advanced helical configurations with an emphasis on understanding the unusual transport properties of helical systems with non-planar magnetic axes, (2) improving the plasma quality, especially by refining particle confinement and increasing the beta limit, and (3) developing Heliotron J into a nuclear fusion reactor. In addition to improving and expanding the experimental data infrastructure of Heliotron J, these goals will greatly contribute to the Numerical Test Reactor project and international collaborative research. We kindly ask for your guidance and support as we move forward in new research directions.

  • 京都大学研究連携基盤
  • 国立大学附置研究所・センター長会議
  • 京都大学宇治キャンパス
  • 京大宇治地区三研究所技術部
  • 刊行物
  • 所内限定ページ
  • 京都大学